弦图若干子类中的半对支配

Michael A. Henning, Arti Pandey, Vikash Tripathi
{"title":"弦图若干子类中的半对支配","authors":"Michael A. Henning, Arti Pandey, Vikash Tripathi","doi":"10.46298/dmtcs.6782","DOIUrl":null,"url":null,"abstract":"A dominating set $D$ of a graph $G$ without isolated vertices is called\nsemipaired dominating set if $D$ can be partitioned into $2$-element subsets\nsuch that the vertices in each set are at distance at most $2$. The semipaired\ndomination number, denoted by $\\gamma_{pr2}(G)$ is the minimum cardinality of a\nsemipaired dominating set of $G$. Given a graph $G$ with no isolated vertices,\nthe \\textsc{Minimum Semipaired Domination} problem is to find a semipaired\ndominating set of $G$ of cardinality $\\gamma_{pr2}(G)$. The decision version of\nthe \\textsc{Minimum Semipaired Domination} problem is already known to be\nNP-complete for chordal graphs, an important graph class. In this paper, we\nshow that the decision version of the \\textsc{Minimum Semipaired Domination}\nproblem remains NP-complete for split graphs, a subclass of chordal graphs. On\nthe positive side, we propose a linear-time algorithm to compute a minimum\ncardinality semipaired dominating set of block graphs. In addition, we prove\nthat the \\textsc{Minimum Semipaired Domination} problem is APX-complete for\ngraphs with maximum degree $3$.\n","PeriodicalId":110830,"journal":{"name":"Discret. Math. Theor. Comput. Sci.","volume":"12 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-08-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Semipaired Domination in Some Subclasses of Chordal Graphs\",\"authors\":\"Michael A. Henning, Arti Pandey, Vikash Tripathi\",\"doi\":\"10.46298/dmtcs.6782\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A dominating set $D$ of a graph $G$ without isolated vertices is called\\nsemipaired dominating set if $D$ can be partitioned into $2$-element subsets\\nsuch that the vertices in each set are at distance at most $2$. The semipaired\\ndomination number, denoted by $\\\\gamma_{pr2}(G)$ is the minimum cardinality of a\\nsemipaired dominating set of $G$. Given a graph $G$ with no isolated vertices,\\nthe \\\\textsc{Minimum Semipaired Domination} problem is to find a semipaired\\ndominating set of $G$ of cardinality $\\\\gamma_{pr2}(G)$. The decision version of\\nthe \\\\textsc{Minimum Semipaired Domination} problem is already known to be\\nNP-complete for chordal graphs, an important graph class. In this paper, we\\nshow that the decision version of the \\\\textsc{Minimum Semipaired Domination}\\nproblem remains NP-complete for split graphs, a subclass of chordal graphs. On\\nthe positive side, we propose a linear-time algorithm to compute a minimum\\ncardinality semipaired dominating set of block graphs. In addition, we prove\\nthat the \\\\textsc{Minimum Semipaired Domination} problem is APX-complete for\\ngraphs with maximum degree $3$.\\n\",\"PeriodicalId\":110830,\"journal\":{\"name\":\"Discret. Math. Theor. Comput. Sci.\",\"volume\":\"12 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-08-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Discret. Math. Theor. Comput. Sci.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.46298/dmtcs.6782\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Discret. Math. Theor. Comput. Sci.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.46298/dmtcs.6782","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

图$G$没有孤立顶点的支配集$D$称为半对支配集,如果$D$可以划分为$2$个元素的子集,使得每个集合中的顶点的距离不超过$2$。半对支配数,用$\gamma_{pr2}(G)$表示,是$G$的半对支配集的最小基数。给定一个没有孤立顶点的图$G$,\textsc{最小半对支配}问题是求一个基数为$\gamma_{pr2}(G)$的半对支配集$G$。弦图是一个重要的\textsc{图类,对于弦图,我们已经知道了最小半对控制}问题的决策版本。本文证明了分割图(弦图的一个子类\textsc{)的最小半对支配问题}的决策版本仍然是np完全的。在积极的方面,我们提出了一个线性时间算法来计算最小基数半对的块图支配集。此外,我们还证明了\textsc{最小半对控制问题}是具有最大度$3$的apx完全图。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Semipaired Domination in Some Subclasses of Chordal Graphs
A dominating set $D$ of a graph $G$ without isolated vertices is called semipaired dominating set if $D$ can be partitioned into $2$-element subsets such that the vertices in each set are at distance at most $2$. The semipaired domination number, denoted by $\gamma_{pr2}(G)$ is the minimum cardinality of a semipaired dominating set of $G$. Given a graph $G$ with no isolated vertices, the \textsc{Minimum Semipaired Domination} problem is to find a semipaired dominating set of $G$ of cardinality $\gamma_{pr2}(G)$. The decision version of the \textsc{Minimum Semipaired Domination} problem is already known to be NP-complete for chordal graphs, an important graph class. In this paper, we show that the decision version of the \textsc{Minimum Semipaired Domination} problem remains NP-complete for split graphs, a subclass of chordal graphs. On the positive side, we propose a linear-time algorithm to compute a minimum cardinality semipaired dominating set of block graphs. In addition, we prove that the \textsc{Minimum Semipaired Domination} problem is APX-complete for graphs with maximum degree $3$.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信