使用概率关系模型生成综合空间或非空间数据库

Rajani Chulyadyo, Philippe Leray
{"title":"使用概率关系模型生成综合空间或非空间数据库","authors":"Rajani Chulyadyo, Philippe Leray","doi":"10.1109/RCIS.2018.8406645","DOIUrl":null,"url":null,"abstract":"When real datasets are difficult to obtain for tasks such as system analysis, or algorithm evaluation, synthetic datasets are commonly used. Techniques for generating such datasets often generate random data for single-table datasets. Such datasets are often inapplicable when it comes to evaluating data mining or machine learning algorithms dealing with relational data. To address this, our earlier works have dealt with the task of generating relational datasets from Probabilistic Relational Models (PRMs), a framework for dealing with probabilistic uncertainties in relational domains. In this article, we extend this work by proposing to use more efficient data sampling algorithms, and by using a spatial extension of PRMs to generate synthetic spatial datasets. We also present our experimental analysis on three different data sampling algorithms applicable in our method, and the quality of the datasets generated by them.","PeriodicalId":408651,"journal":{"name":"2018 12th International Conference on Research Challenges in Information Science (RCIS)","volume":"804 ","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-05-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Using Probabilistic Relational Models to generate synthetic spatial or non-spatial databases\",\"authors\":\"Rajani Chulyadyo, Philippe Leray\",\"doi\":\"10.1109/RCIS.2018.8406645\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"When real datasets are difficult to obtain for tasks such as system analysis, or algorithm evaluation, synthetic datasets are commonly used. Techniques for generating such datasets often generate random data for single-table datasets. Such datasets are often inapplicable when it comes to evaluating data mining or machine learning algorithms dealing with relational data. To address this, our earlier works have dealt with the task of generating relational datasets from Probabilistic Relational Models (PRMs), a framework for dealing with probabilistic uncertainties in relational domains. In this article, we extend this work by proposing to use more efficient data sampling algorithms, and by using a spatial extension of PRMs to generate synthetic spatial datasets. We also present our experimental analysis on three different data sampling algorithms applicable in our method, and the quality of the datasets generated by them.\",\"PeriodicalId\":408651,\"journal\":{\"name\":\"2018 12th International Conference on Research Challenges in Information Science (RCIS)\",\"volume\":\"804 \",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-05-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 12th International Conference on Research Challenges in Information Science (RCIS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/RCIS.2018.8406645\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 12th International Conference on Research Challenges in Information Science (RCIS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/RCIS.2018.8406645","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

当系统分析或算法评估等任务难以获得真实数据集时,通常使用合成数据集。生成此类数据集的技术通常会为单表数据集生成随机数据。当涉及到评估数据挖掘或处理关系数据的机器学习算法时,这样的数据集通常不适用。为了解决这个问题,我们早期的工作已经处理了从概率关系模型(PRMs)生成关系数据集的任务,PRMs是处理关系领域中概率不确定性的框架。在本文中,我们通过提出使用更有效的数据采样算法以及使用prm的空间扩展来生成合成空间数据集来扩展这项工作。我们还介绍了适用于我们方法的三种不同数据采样算法的实验分析,以及它们生成的数据集的质量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Using Probabilistic Relational Models to generate synthetic spatial or non-spatial databases
When real datasets are difficult to obtain for tasks such as system analysis, or algorithm evaluation, synthetic datasets are commonly used. Techniques for generating such datasets often generate random data for single-table datasets. Such datasets are often inapplicable when it comes to evaluating data mining or machine learning algorithms dealing with relational data. To address this, our earlier works have dealt with the task of generating relational datasets from Probabilistic Relational Models (PRMs), a framework for dealing with probabilistic uncertainties in relational domains. In this article, we extend this work by proposing to use more efficient data sampling algorithms, and by using a spatial extension of PRMs to generate synthetic spatial datasets. We also present our experimental analysis on three different data sampling algorithms applicable in our method, and the quality of the datasets generated by them.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信