{"title":"从蘑菇残渣中提取的蚯蚓堆肥可以改善土壤碳磷循环、细菌群落和真菌丰度","authors":"Dongqi Jiang, Chenran Wu, Shuqiang Wang, Yulan Zhang, Zhenhua Chen, Nan Jiang, Ying Zhang, Hongtu Xie","doi":"10.1111/gcbb.13103","DOIUrl":null,"url":null,"abstract":"<p>The utilization of agricultural waste organic materials through composting technology has gained significant traction in agricultural production as an effective means of crop nutrient management. However, the differences in the impact of organic amendments prepared by traditional composting and vermicomposting on soil properties still deserve further research. Based on field experiments conducted in greenhouse, compared to chemical fertilizer treatments as control, we utilized traditional compost (OF) and vermicompost (VcF) derived from agricultural organic waste edible mushroom bran and cow manure (2:8). Variations in soil physiochemical properties, activities of soil enzymes related C and P cycling, abundances and diversities of bacterial 16S rRNA and fungal ITS gene at total DNA level were analyzed. Both compost treatments enhanced soil organic carbon, soil total phosphorus, and soil available P content significantly and also increased the activities of soil α-glucosidase, β-glucosidase, acid phosphomonoesterase, and alkaline phosphomonoesterase significantly. The above results suggested that soil C and P transformations were stimulated effectively by both organic amendments. OF and VcF increased the fungal ITS absolute abundances significantly while diversity indices of soil bacterial community increased significantly under both treatments. Correlation analysis indicated that bacterial community composition was strongly correlated with several soil property indexes while fungal community composition was only significantly correlated with soil total phosphorous content. In conclusion, similar to traditional compost, vermicompost significantly improved soil nutrient cycling (especially C and P aspects). In terms of soil microbes, bacteria and fungi showed different responding mechanism to vermicompost: bacteria adjust microbial structure, while fungi tend to proliferated. In consideration of the advantages of vermicompost in technology and economic cost, it could be applied in the subsequent agricultural production more frequently.</p>","PeriodicalId":55126,"journal":{"name":"Global Change Biology Bioenergy","volume":"15 12","pages":"1437-1449"},"PeriodicalIF":5.9000,"publicationDate":"2023-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/gcbb.13103","citationCount":"0","resultStr":"{\"title\":\"Vermicompost derived from mushroom residues improves soil C/P cycling, bacterial community, and fungal abundance\",\"authors\":\"Dongqi Jiang, Chenran Wu, Shuqiang Wang, Yulan Zhang, Zhenhua Chen, Nan Jiang, Ying Zhang, Hongtu Xie\",\"doi\":\"10.1111/gcbb.13103\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The utilization of agricultural waste organic materials through composting technology has gained significant traction in agricultural production as an effective means of crop nutrient management. However, the differences in the impact of organic amendments prepared by traditional composting and vermicomposting on soil properties still deserve further research. Based on field experiments conducted in greenhouse, compared to chemical fertilizer treatments as control, we utilized traditional compost (OF) and vermicompost (VcF) derived from agricultural organic waste edible mushroom bran and cow manure (2:8). Variations in soil physiochemical properties, activities of soil enzymes related C and P cycling, abundances and diversities of bacterial 16S rRNA and fungal ITS gene at total DNA level were analyzed. Both compost treatments enhanced soil organic carbon, soil total phosphorus, and soil available P content significantly and also increased the activities of soil α-glucosidase, β-glucosidase, acid phosphomonoesterase, and alkaline phosphomonoesterase significantly. The above results suggested that soil C and P transformations were stimulated effectively by both organic amendments. OF and VcF increased the fungal ITS absolute abundances significantly while diversity indices of soil bacterial community increased significantly under both treatments. Correlation analysis indicated that bacterial community composition was strongly correlated with several soil property indexes while fungal community composition was only significantly correlated with soil total phosphorous content. In conclusion, similar to traditional compost, vermicompost significantly improved soil nutrient cycling (especially C and P aspects). In terms of soil microbes, bacteria and fungi showed different responding mechanism to vermicompost: bacteria adjust microbial structure, while fungi tend to proliferated. In consideration of the advantages of vermicompost in technology and economic cost, it could be applied in the subsequent agricultural production more frequently.</p>\",\"PeriodicalId\":55126,\"journal\":{\"name\":\"Global Change Biology Bioenergy\",\"volume\":\"15 12\",\"pages\":\"1437-1449\"},\"PeriodicalIF\":5.9000,\"publicationDate\":\"2023-10-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1111/gcbb.13103\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Global Change Biology Bioenergy\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/gcbb.13103\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"AGRONOMY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Global Change Biology Bioenergy","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/gcbb.13103","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRONOMY","Score":null,"Total":0}
Vermicompost derived from mushroom residues improves soil C/P cycling, bacterial community, and fungal abundance
The utilization of agricultural waste organic materials through composting technology has gained significant traction in agricultural production as an effective means of crop nutrient management. However, the differences in the impact of organic amendments prepared by traditional composting and vermicomposting on soil properties still deserve further research. Based on field experiments conducted in greenhouse, compared to chemical fertilizer treatments as control, we utilized traditional compost (OF) and vermicompost (VcF) derived from agricultural organic waste edible mushroom bran and cow manure (2:8). Variations in soil physiochemical properties, activities of soil enzymes related C and P cycling, abundances and diversities of bacterial 16S rRNA and fungal ITS gene at total DNA level were analyzed. Both compost treatments enhanced soil organic carbon, soil total phosphorus, and soil available P content significantly and also increased the activities of soil α-glucosidase, β-glucosidase, acid phosphomonoesterase, and alkaline phosphomonoesterase significantly. The above results suggested that soil C and P transformations were stimulated effectively by both organic amendments. OF and VcF increased the fungal ITS absolute abundances significantly while diversity indices of soil bacterial community increased significantly under both treatments. Correlation analysis indicated that bacterial community composition was strongly correlated with several soil property indexes while fungal community composition was only significantly correlated with soil total phosphorous content. In conclusion, similar to traditional compost, vermicompost significantly improved soil nutrient cycling (especially C and P aspects). In terms of soil microbes, bacteria and fungi showed different responding mechanism to vermicompost: bacteria adjust microbial structure, while fungi tend to proliferated. In consideration of the advantages of vermicompost in technology and economic cost, it could be applied in the subsequent agricultural production more frequently.
期刊介绍:
GCB Bioenergy is an international journal publishing original research papers, review articles and commentaries that promote understanding of the interface between biological and environmental sciences and the production of fuels directly from plants, algae and waste. The scope of the journal extends to areas outside of biology to policy forum, socioeconomic analyses, technoeconomic analyses and systems analysis. Papers do not need a global change component for consideration for publication, it is viewed as implicit that most bioenergy will be beneficial in avoiding at least a part of the fossil fuel energy that would otherwise be used.
Key areas covered by the journal:
Bioenergy feedstock and bio-oil production: energy crops and algae their management,, genomics, genetic improvements, planting, harvesting, storage, transportation, integrated logistics, production modeling, composition and its modification, pests, diseases and weeds of feedstocks. Manuscripts concerning alternative energy based on biological mimicry are also encouraged (e.g. artificial photosynthesis).
Biological Residues/Co-products: from agricultural production, forestry and plantations (stover, sugar, bio-plastics, etc.), algae processing industries, and municipal sources (MSW).
Bioenergy and the Environment: ecosystem services, carbon mitigation, land use change, life cycle assessment, energy and greenhouse gas balances, water use, water quality, assessment of sustainability, and biodiversity issues.
Bioenergy Socioeconomics: examining the economic viability or social acceptability of crops, crops systems and their processing, including genetically modified organisms [GMOs], health impacts of bioenergy systems.
Bioenergy Policy: legislative developments affecting biofuels and bioenergy.
Bioenergy Systems Analysis: examining biological developments in a whole systems context.