{"title":"基于伪标签机器学习的继电器预测维护算法","authors":"Fabian Winkel;Oliver Wallscheid;Peter Scholz;Joachim Böcker","doi":"10.1109/OJIES.2023.3323870","DOIUrl":null,"url":null,"abstract":"Predictive maintenance (PdM) has become an important industrial feature. Existing methods mainly focus on remaining useful life (RUL) regression or anomaly detection to achieve PdM in a given application. Those approaches assume monotonic degradation processes leading to a single catastrophic failure at the system's end of lifetime. In contrast, much more complex degradation processes can be found in real-world applications, which are characterized by effects like self-healing or noncatastrophic anomalies. A important example of devices with complex degradation are electromechanical relays. As established PdM solutions failed when applied to a real-world relays degradation data set, the maintenance algorithm for unlabeled data (MAUD) is presented to detect signs of wear and enable a service in time. In detail, MAUD is based on an artificial neural network (ANN), which is trained semisupervised. Experiments with measurement data from 546 relays show that MAUD is superior to various existing methods: The static B10 threshold, which represents the state of the art in relay maintenance, is surpassed by a 17.07 p.p. increase in utilization while reducing failures by 6.42 p.p. Methods based on machine learning, such as RUL estimation and anomaly detection, achieved much lower utilization (up to 31.83 p.p.) compared with MAUD while maintaining the same failure rate.","PeriodicalId":52675,"journal":{"name":"IEEE Open Journal of the Industrial Electronics Society","volume":"4 ","pages":"463-475"},"PeriodicalIF":5.2000,"publicationDate":"2023-10-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10285575","citationCount":"0","resultStr":"{\"title\":\"Pseudolabeling Machine Learning Algorithm for Predictive Maintenance of Relays\",\"authors\":\"Fabian Winkel;Oliver Wallscheid;Peter Scholz;Joachim Böcker\",\"doi\":\"10.1109/OJIES.2023.3323870\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Predictive maintenance (PdM) has become an important industrial feature. Existing methods mainly focus on remaining useful life (RUL) regression or anomaly detection to achieve PdM in a given application. Those approaches assume monotonic degradation processes leading to a single catastrophic failure at the system's end of lifetime. In contrast, much more complex degradation processes can be found in real-world applications, which are characterized by effects like self-healing or noncatastrophic anomalies. A important example of devices with complex degradation are electromechanical relays. As established PdM solutions failed when applied to a real-world relays degradation data set, the maintenance algorithm for unlabeled data (MAUD) is presented to detect signs of wear and enable a service in time. In detail, MAUD is based on an artificial neural network (ANN), which is trained semisupervised. Experiments with measurement data from 546 relays show that MAUD is superior to various existing methods: The static B10 threshold, which represents the state of the art in relay maintenance, is surpassed by a 17.07 p.p. increase in utilization while reducing failures by 6.42 p.p. Methods based on machine learning, such as RUL estimation and anomaly detection, achieved much lower utilization (up to 31.83 p.p.) compared with MAUD while maintaining the same failure rate.\",\"PeriodicalId\":52675,\"journal\":{\"name\":\"IEEE Open Journal of the Industrial Electronics Society\",\"volume\":\"4 \",\"pages\":\"463-475\"},\"PeriodicalIF\":5.2000,\"publicationDate\":\"2023-10-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10285575\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Open Journal of the Industrial Electronics Society\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10285575/\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Open Journal of the Industrial Electronics Society","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10285575/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
Pseudolabeling Machine Learning Algorithm for Predictive Maintenance of Relays
Predictive maintenance (PdM) has become an important industrial feature. Existing methods mainly focus on remaining useful life (RUL) regression or anomaly detection to achieve PdM in a given application. Those approaches assume monotonic degradation processes leading to a single catastrophic failure at the system's end of lifetime. In contrast, much more complex degradation processes can be found in real-world applications, which are characterized by effects like self-healing or noncatastrophic anomalies. A important example of devices with complex degradation are electromechanical relays. As established PdM solutions failed when applied to a real-world relays degradation data set, the maintenance algorithm for unlabeled data (MAUD) is presented to detect signs of wear and enable a service in time. In detail, MAUD is based on an artificial neural network (ANN), which is trained semisupervised. Experiments with measurement data from 546 relays show that MAUD is superior to various existing methods: The static B10 threshold, which represents the state of the art in relay maintenance, is surpassed by a 17.07 p.p. increase in utilization while reducing failures by 6.42 p.p. Methods based on machine learning, such as RUL estimation and anomaly detection, achieved much lower utilization (up to 31.83 p.p.) compared with MAUD while maintaining the same failure rate.
期刊介绍:
The IEEE Open Journal of the Industrial Electronics Society is dedicated to advancing information-intensive, knowledge-based automation, and digitalization, aiming to enhance various industrial and infrastructural ecosystems including energy, mobility, health, and home/building infrastructure. Encompassing a range of techniques leveraging data and information acquisition, analysis, manipulation, and distribution, the journal strives to achieve greater flexibility, efficiency, effectiveness, reliability, and security within digitalized and networked environments.
Our scope provides a platform for discourse and dissemination of the latest developments in numerous research and innovation areas. These include electrical components and systems, smart grids, industrial cyber-physical systems, motion control, robotics and mechatronics, sensors and actuators, factory and building communication and automation, industrial digitalization, flexible and reconfigurable manufacturing, assistant systems, industrial applications of artificial intelligence and data science, as well as the implementation of machine learning, artificial neural networks, and fuzzy logic. Additionally, we explore human factors in digitalized and networked ecosystems. Join us in exploring and shaping the future of industrial electronics and digitalization.