Hossein Ali Ebrahimi, Samira Esmaeli, Saleh Khezri, Ahmad Salimi
{"title":"姜黄素壳聚糖纳米粒制备及其对塞来昔布致大鼠心肌细胞和线粒体毒性的保护作用。","authors":"Hossein Ali Ebrahimi, Samira Esmaeli, Saleh Khezri, Ahmad Salimi","doi":"10.1055/a-1960-3092","DOIUrl":null,"url":null,"abstract":"<p><p>Curcumin has a wide range of pharmacological activities, including antioxidant, anti-inflammatory and tissue protective. In here we hypothesized that curcumin-loaded chitosan-coated solid lipid nanoparticles (CuCsSLN) are able to increase its overall bioavailability and hence its antioxidant and mitochondria;/lysosomal protective properties of curcumin. CuCsSLN were prepared using solvent diffusion technique for formation of solid lipid nanoparticles (SLNs) and electrostatic coating of positive-charged chitosan to negative surface of SLNs. CuCsSLN showed the encapsulation efficiency of 91.4±2.7%, the mean particle size of 208±9 nm, the polydispersity index of 0.34±0.07, and the zeta potential of+53.5±3.7 mV. The scanning electron microscope (SEM) images of nanoparticles verified their nanometric size and also spherical shape. Curcumin was released from CuCsSLN in a sustain release pattern up to 24 hours. Then isolated cardiomyocytes and mitochondria were simultaneously treated with (1) control (0.05% ethanol), (2) celecoxib (20 µg/ml) treatment, (3) celecoxib (20 µg/ml)+++CuCsSLN (1 µg/ml) treatment, (4) CuCsSLN (1 µg/ml) treatment, (5) celecoxib (20 µg/ml)+++curcumin (10 µM) treatment and (6) curcumin (10 µM) treatment for 4 h at 37°C. The results showed that celecoxib (20 µg/ml) induced a significant increase in cytotoxicity, reactive oxygen species (ROS) formation, mitochondria membrane potential (ΔΨm) collapse, lipid peroxidation, oxidative stress and mitochondrial swelling while CuCsSLN and curcumin reverted the above toxic effect of celecoxib. Our data indicated that the effect of CuCsSLN in a number of experiments, is significantly better than that of curcumin which shows the role of chitosan nanoparticles in increasing effect of curcumin.</p>","PeriodicalId":11451,"journal":{"name":"Drug Research","volume":"73 3","pages":"125-136"},"PeriodicalIF":1.7000,"publicationDate":"2023-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Curcumin-Loaded Chitosan Nanoparticle Preparation and Its Protective Effect on Celecoxib-induced Toxicity in Rat isolated Cardiomyocytes and Mitochondria.\",\"authors\":\"Hossein Ali Ebrahimi, Samira Esmaeli, Saleh Khezri, Ahmad Salimi\",\"doi\":\"10.1055/a-1960-3092\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Curcumin has a wide range of pharmacological activities, including antioxidant, anti-inflammatory and tissue protective. In here we hypothesized that curcumin-loaded chitosan-coated solid lipid nanoparticles (CuCsSLN) are able to increase its overall bioavailability and hence its antioxidant and mitochondria;/lysosomal protective properties of curcumin. CuCsSLN were prepared using solvent diffusion technique for formation of solid lipid nanoparticles (SLNs) and electrostatic coating of positive-charged chitosan to negative surface of SLNs. CuCsSLN showed the encapsulation efficiency of 91.4±2.7%, the mean particle size of 208±9 nm, the polydispersity index of 0.34±0.07, and the zeta potential of+53.5±3.7 mV. The scanning electron microscope (SEM) images of nanoparticles verified their nanometric size and also spherical shape. Curcumin was released from CuCsSLN in a sustain release pattern up to 24 hours. Then isolated cardiomyocytes and mitochondria were simultaneously treated with (1) control (0.05% ethanol), (2) celecoxib (20 µg/ml) treatment, (3) celecoxib (20 µg/ml)+++CuCsSLN (1 µg/ml) treatment, (4) CuCsSLN (1 µg/ml) treatment, (5) celecoxib (20 µg/ml)+++curcumin (10 µM) treatment and (6) curcumin (10 µM) treatment for 4 h at 37°C. The results showed that celecoxib (20 µg/ml) induced a significant increase in cytotoxicity, reactive oxygen species (ROS) formation, mitochondria membrane potential (ΔΨm) collapse, lipid peroxidation, oxidative stress and mitochondrial swelling while CuCsSLN and curcumin reverted the above toxic effect of celecoxib. Our data indicated that the effect of CuCsSLN in a number of experiments, is significantly better than that of curcumin which shows the role of chitosan nanoparticles in increasing effect of curcumin.</p>\",\"PeriodicalId\":11451,\"journal\":{\"name\":\"Drug Research\",\"volume\":\"73 3\",\"pages\":\"125-136\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2023-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Drug Research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1055/a-1960-3092\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"PHARMACOLOGY & PHARMACY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Drug Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1055/a-1960-3092","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
Curcumin-Loaded Chitosan Nanoparticle Preparation and Its Protective Effect on Celecoxib-induced Toxicity in Rat isolated Cardiomyocytes and Mitochondria.
Curcumin has a wide range of pharmacological activities, including antioxidant, anti-inflammatory and tissue protective. In here we hypothesized that curcumin-loaded chitosan-coated solid lipid nanoparticles (CuCsSLN) are able to increase its overall bioavailability and hence its antioxidant and mitochondria;/lysosomal protective properties of curcumin. CuCsSLN were prepared using solvent diffusion technique for formation of solid lipid nanoparticles (SLNs) and electrostatic coating of positive-charged chitosan to negative surface of SLNs. CuCsSLN showed the encapsulation efficiency of 91.4±2.7%, the mean particle size of 208±9 nm, the polydispersity index of 0.34±0.07, and the zeta potential of+53.5±3.7 mV. The scanning electron microscope (SEM) images of nanoparticles verified their nanometric size and also spherical shape. Curcumin was released from CuCsSLN in a sustain release pattern up to 24 hours. Then isolated cardiomyocytes and mitochondria were simultaneously treated with (1) control (0.05% ethanol), (2) celecoxib (20 µg/ml) treatment, (3) celecoxib (20 µg/ml)+++CuCsSLN (1 µg/ml) treatment, (4) CuCsSLN (1 µg/ml) treatment, (5) celecoxib (20 µg/ml)+++curcumin (10 µM) treatment and (6) curcumin (10 µM) treatment for 4 h at 37°C. The results showed that celecoxib (20 µg/ml) induced a significant increase in cytotoxicity, reactive oxygen species (ROS) formation, mitochondria membrane potential (ΔΨm) collapse, lipid peroxidation, oxidative stress and mitochondrial swelling while CuCsSLN and curcumin reverted the above toxic effect of celecoxib. Our data indicated that the effect of CuCsSLN in a number of experiments, is significantly better than that of curcumin which shows the role of chitosan nanoparticles in increasing effect of curcumin.
期刊介绍:
Drug Research (formerly Arzneimittelforschung) is an international peer-reviewed journal with expedited processing times presenting the very latest research results related to novel and established drug molecules and the evaluation of new drug development. A key focus of the publication is translational medicine and the application of biological discoveries in the development of drugs for use in the clinical environment. Articles and experimental data from across the field of drug research address not only the issue of drug discovery, but also the mathematical and statistical methods for evaluating results from industrial investigations and clinical trials. Publishing twelve times a year, Drug Research includes original research articles as well as reviews, commentaries and short communications in the following areas: analytics applied to clinical trials chemistry and biochemistry clinical and experimental pharmacology drug interactions efficacy testing pharmacodynamics pharmacokinetics teratology toxicology.