{"title":"检测印度对 COVID-19 疫苗的犹豫态度:基于多模态转换器的方法。","authors":"Anindita Borah","doi":"10.1007/s10844-022-00745-1","DOIUrl":null,"url":null,"abstract":"<p><p>COVID-19 has emerged as the greatest threat in recent times, causing extensive mortality and morbidity in the entire world. India is among the highly affected countries suffering severe disruptions due this pandemic. To overcome the adverse effects of COVID-19, vaccination has been identified as the most effective preventive measure globally. However, a growing amount of hesitancy has been observed among the general public regarding the efficacy and possible side-effects of vaccination. Such hesitancy may proved to be the greatest hindrance towards combating this deadly pandemic. This paper introduces a multimodal deep learning method for Indian Twitter user classification, leveraging both content-based and network-based features. To explore the fundamental features of different modalities, improvisations of transformer models, BERT and GraphBERT are utilized to encode the textual and network structure information. The proposed approach thus integrates multiple data representations, utilizing the advances in both transformer based deep learning as well as multimodal learning. Experimental results demonstrates the efficacy of proposed approach over state of the art approaches. Aggregated feature representations from multiple modalities embed additional information that improves the classification results. The findings of the proposed model has been further utilized to perform a study on the dynamics of COVID-19 vaccine hesitancy in India.</p>","PeriodicalId":56119,"journal":{"name":"Journal of Intelligent Information Systems","volume":"60 1","pages":"157-173"},"PeriodicalIF":2.3000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9449921/pdf/","citationCount":"0","resultStr":"{\"title\":\"Detecting COVID-19 vaccine hesitancy in India: a multimodal transformer based approach.\",\"authors\":\"Anindita Borah\",\"doi\":\"10.1007/s10844-022-00745-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>COVID-19 has emerged as the greatest threat in recent times, causing extensive mortality and morbidity in the entire world. India is among the highly affected countries suffering severe disruptions due this pandemic. To overcome the adverse effects of COVID-19, vaccination has been identified as the most effective preventive measure globally. However, a growing amount of hesitancy has been observed among the general public regarding the efficacy and possible side-effects of vaccination. Such hesitancy may proved to be the greatest hindrance towards combating this deadly pandemic. This paper introduces a multimodal deep learning method for Indian Twitter user classification, leveraging both content-based and network-based features. To explore the fundamental features of different modalities, improvisations of transformer models, BERT and GraphBERT are utilized to encode the textual and network structure information. The proposed approach thus integrates multiple data representations, utilizing the advances in both transformer based deep learning as well as multimodal learning. Experimental results demonstrates the efficacy of proposed approach over state of the art approaches. Aggregated feature representations from multiple modalities embed additional information that improves the classification results. The findings of the proposed model has been further utilized to perform a study on the dynamics of COVID-19 vaccine hesitancy in India.</p>\",\"PeriodicalId\":56119,\"journal\":{\"name\":\"Journal of Intelligent Information Systems\",\"volume\":\"60 1\",\"pages\":\"157-173\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9449921/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Intelligent Information Systems\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1007/s10844-022-00745-1\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2022/9/7 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Intelligent Information Systems","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s10844-022-00745-1","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2022/9/7 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
Detecting COVID-19 vaccine hesitancy in India: a multimodal transformer based approach.
COVID-19 has emerged as the greatest threat in recent times, causing extensive mortality and morbidity in the entire world. India is among the highly affected countries suffering severe disruptions due this pandemic. To overcome the adverse effects of COVID-19, vaccination has been identified as the most effective preventive measure globally. However, a growing amount of hesitancy has been observed among the general public regarding the efficacy and possible side-effects of vaccination. Such hesitancy may proved to be the greatest hindrance towards combating this deadly pandemic. This paper introduces a multimodal deep learning method for Indian Twitter user classification, leveraging both content-based and network-based features. To explore the fundamental features of different modalities, improvisations of transformer models, BERT and GraphBERT are utilized to encode the textual and network structure information. The proposed approach thus integrates multiple data representations, utilizing the advances in both transformer based deep learning as well as multimodal learning. Experimental results demonstrates the efficacy of proposed approach over state of the art approaches. Aggregated feature representations from multiple modalities embed additional information that improves the classification results. The findings of the proposed model has been further utilized to perform a study on the dynamics of COVID-19 vaccine hesitancy in India.
期刊介绍:
The mission of the Journal of Intelligent Information Systems: Integrating Artifical Intelligence and Database Technologies is to foster and present research and development results focused on the integration of artificial intelligence and database technologies to create next generation information systems - Intelligent Information Systems.
These new information systems embody knowledge that allows them to exhibit intelligent behavior, cooperate with users and other systems in problem solving, discovery, access, retrieval and manipulation of a wide variety of multimedia data and knowledge, and reason under uncertainty. Increasingly, knowledge-directed inference processes are being used to:
discover knowledge from large data collections,
provide cooperative support to users in complex query formulation and refinement,
access, retrieve, store and manage large collections of multimedia data and knowledge,
integrate information from multiple heterogeneous data and knowledge sources, and
reason about information under uncertain conditions.
Multimedia and hypermedia information systems now operate on a global scale over the Internet, and new tools and techniques are needed to manage these dynamic and evolving information spaces.
The Journal of Intelligent Information Systems provides a forum wherein academics, researchers and practitioners may publish high-quality, original and state-of-the-art papers describing theoretical aspects, systems architectures, analysis and design tools and techniques, and implementation experiences in intelligent information systems. The categories of papers published by JIIS include: research papers, invited papters, meetings, workshop and conference annoucements and reports, survey and tutorial articles, and book reviews. Short articles describing open problems or their solutions are also welcome.