Raphael Nyaruaba , Caroline Mwaliko , Wei Hong , Patrick Amoth , Hongping Wei
{"title":"SARS-CoV-2/COVID-19实验室生物安全做法和当前的分子诊断工具","authors":"Raphael Nyaruaba , Caroline Mwaliko , Wei Hong , Patrick Amoth , Hongping Wei","doi":"10.1016/j.jobb.2021.10.001","DOIUrl":null,"url":null,"abstract":"<div><p>The ongoing severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)/coronavirus disease 2019 (COVID-19) pandemic has crippled several countries across the globe posing a serious global public health challenge. Despite the massive rollout of vaccines, molecular diagnosis remains the most important method for timely isolation, diagnosis, and control of COVID-19. Several molecular diagnostic tools have been developed since the beginning of the pandemic with some even gaining emergency use authorization from the United States (US) Food and Drug Administration for <em>in vitro</em> diagnosis of SARS-CoV-2. Herein, we discuss the working principles of some commonly used molecular diagnostic tools for SARS-CoV-2 including nucleic acid amplification tests, isothermal amplification tests, and rapid diagnostic tests. To ensure successful detection while minimizing the risk of cross-infection and misdiagnosis when using these diagnostic tools, laboratories should adhere to proper biosafety practices. Hence, we also present the common biosafety practices that may ensure the successful detection of SARS-CoV-2 from specimens while protecting laboratory workers and non-suspecting individuals from being infected. From this review article, it is clear that the SARS-CoV-2 pandemic has led to an increase in molecular diagnostic tools and the formation of new biosafety protocols that may be important for future and ongoing outbreaks.</p></div>","PeriodicalId":52875,"journal":{"name":"Journal of Biosafety and Biosecurity","volume":"3 2","pages":"Pages 131-140"},"PeriodicalIF":0.0000,"publicationDate":"2021-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8559769/pdf/","citationCount":"7","resultStr":"{\"title\":\"SARS-CoV-2/COVID-19 laboratory biosafety practices and current molecular diagnostic tools\",\"authors\":\"Raphael Nyaruaba , Caroline Mwaliko , Wei Hong , Patrick Amoth , Hongping Wei\",\"doi\":\"10.1016/j.jobb.2021.10.001\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The ongoing severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)/coronavirus disease 2019 (COVID-19) pandemic has crippled several countries across the globe posing a serious global public health challenge. Despite the massive rollout of vaccines, molecular diagnosis remains the most important method for timely isolation, diagnosis, and control of COVID-19. Several molecular diagnostic tools have been developed since the beginning of the pandemic with some even gaining emergency use authorization from the United States (US) Food and Drug Administration for <em>in vitro</em> diagnosis of SARS-CoV-2. Herein, we discuss the working principles of some commonly used molecular diagnostic tools for SARS-CoV-2 including nucleic acid amplification tests, isothermal amplification tests, and rapid diagnostic tests. To ensure successful detection while minimizing the risk of cross-infection and misdiagnosis when using these diagnostic tools, laboratories should adhere to proper biosafety practices. Hence, we also present the common biosafety practices that may ensure the successful detection of SARS-CoV-2 from specimens while protecting laboratory workers and non-suspecting individuals from being infected. From this review article, it is clear that the SARS-CoV-2 pandemic has led to an increase in molecular diagnostic tools and the formation of new biosafety protocols that may be important for future and ongoing outbreaks.</p></div>\",\"PeriodicalId\":52875,\"journal\":{\"name\":\"Journal of Biosafety and Biosecurity\",\"volume\":\"3 2\",\"pages\":\"Pages 131-140\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8559769/pdf/\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Biosafety and Biosecurity\",\"FirstCategoryId\":\"1093\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2588933821000352\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Social Sciences\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Biosafety and Biosecurity","FirstCategoryId":"1093","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2588933821000352","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Social Sciences","Score":null,"Total":0}
SARS-CoV-2/COVID-19 laboratory biosafety practices and current molecular diagnostic tools
The ongoing severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)/coronavirus disease 2019 (COVID-19) pandemic has crippled several countries across the globe posing a serious global public health challenge. Despite the massive rollout of vaccines, molecular diagnosis remains the most important method for timely isolation, diagnosis, and control of COVID-19. Several molecular diagnostic tools have been developed since the beginning of the pandemic with some even gaining emergency use authorization from the United States (US) Food and Drug Administration for in vitro diagnosis of SARS-CoV-2. Herein, we discuss the working principles of some commonly used molecular diagnostic tools for SARS-CoV-2 including nucleic acid amplification tests, isothermal amplification tests, and rapid diagnostic tests. To ensure successful detection while minimizing the risk of cross-infection and misdiagnosis when using these diagnostic tools, laboratories should adhere to proper biosafety practices. Hence, we also present the common biosafety practices that may ensure the successful detection of SARS-CoV-2 from specimens while protecting laboratory workers and non-suspecting individuals from being infected. From this review article, it is clear that the SARS-CoV-2 pandemic has led to an increase in molecular diagnostic tools and the formation of new biosafety protocols that may be important for future and ongoing outbreaks.