Ekaterina Lyzhko , Stefanie E. Peter , Frauke Nees , Michael Siniatchkin , Vera Moliadze
{"title":"在运动反应抑制任务中,右额下回上的离线20赫兹经颅交流电刺激增加了θ活动","authors":"Ekaterina Lyzhko , Stefanie E. Peter , Frauke Nees , Michael Siniatchkin , Vera Moliadze","doi":"10.1016/j.neucli.2023.102887","DOIUrl":null,"url":null,"abstract":"<div><h3>Objectives</h3><p>Previous studies have shown that the right inferior frontal gyrus (rIFG) and the pre-supplementary motor area (preSMA) play an important role in motor inhibitory control. The aim of the study was to use theta frequency transcranial alternating current stimulation (tACS) to modulate brain activity in the rIFG and preSMA and to test the effects of stimulation using a motor response inhibition task.</p></div><div><h3>Methods</h3><p>In four sessions, 20 healthy participants received tACS at 6 Hz over preSMA or rIFG, or 20 Hz over rIFG (to test frequency specificity), or sham stimulation before task processing. After each type of stimulation, the participants performed the Go/NoGo task with simultaneous electroencephalogram (EEG) recording.</p></div><div><h3>Results</h3><p>By stimulating rIFG and preSMA with 6 Hz tACS, we were not able to modulate either behavioral performance nor the EEG correlate. Interestingly, 20 Hz tACS over the rIFG significantly increased theta activity, however without behavioral effects. This increased theta activity did not coincide with the stimulation area and was localized in the fronto-central and centro-parietal areas.</p></div><div><h3>Conclusions</h3><p>The inclusion of a control frequency is crucial to test for frequency specificity. Our findings are in accordance with previous studies showing that after effects of tACS are not restricted to the stimulation frequency but can also occur in other frequency bands.</p></div>","PeriodicalId":19134,"journal":{"name":"Neurophysiologie Clinique/Clinical Neurophysiology","volume":"53 3","pages":"Article 102887"},"PeriodicalIF":2.7000,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Offline 20 Hz transcranial alternating current stimulation over the right inferior frontal gyrus increases theta activity during a motor response inhibition task\",\"authors\":\"Ekaterina Lyzhko , Stefanie E. Peter , Frauke Nees , Michael Siniatchkin , Vera Moliadze\",\"doi\":\"10.1016/j.neucli.2023.102887\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><h3>Objectives</h3><p>Previous studies have shown that the right inferior frontal gyrus (rIFG) and the pre-supplementary motor area (preSMA) play an important role in motor inhibitory control. The aim of the study was to use theta frequency transcranial alternating current stimulation (tACS) to modulate brain activity in the rIFG and preSMA and to test the effects of stimulation using a motor response inhibition task.</p></div><div><h3>Methods</h3><p>In four sessions, 20 healthy participants received tACS at 6 Hz over preSMA or rIFG, or 20 Hz over rIFG (to test frequency specificity), or sham stimulation before task processing. After each type of stimulation, the participants performed the Go/NoGo task with simultaneous electroencephalogram (EEG) recording.</p></div><div><h3>Results</h3><p>By stimulating rIFG and preSMA with 6 Hz tACS, we were not able to modulate either behavioral performance nor the EEG correlate. Interestingly, 20 Hz tACS over the rIFG significantly increased theta activity, however without behavioral effects. This increased theta activity did not coincide with the stimulation area and was localized in the fronto-central and centro-parietal areas.</p></div><div><h3>Conclusions</h3><p>The inclusion of a control frequency is crucial to test for frequency specificity. Our findings are in accordance with previous studies showing that after effects of tACS are not restricted to the stimulation frequency but can also occur in other frequency bands.</p></div>\",\"PeriodicalId\":19134,\"journal\":{\"name\":\"Neurophysiologie Clinique/Clinical Neurophysiology\",\"volume\":\"53 3\",\"pages\":\"Article 102887\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2023-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Neurophysiologie Clinique/Clinical Neurophysiology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0987705323000448\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CLINICAL NEUROLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neurophysiologie Clinique/Clinical Neurophysiology","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0987705323000448","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CLINICAL NEUROLOGY","Score":null,"Total":0}
Offline 20 Hz transcranial alternating current stimulation over the right inferior frontal gyrus increases theta activity during a motor response inhibition task
Objectives
Previous studies have shown that the right inferior frontal gyrus (rIFG) and the pre-supplementary motor area (preSMA) play an important role in motor inhibitory control. The aim of the study was to use theta frequency transcranial alternating current stimulation (tACS) to modulate brain activity in the rIFG and preSMA and to test the effects of stimulation using a motor response inhibition task.
Methods
In four sessions, 20 healthy participants received tACS at 6 Hz over preSMA or rIFG, or 20 Hz over rIFG (to test frequency specificity), or sham stimulation before task processing. After each type of stimulation, the participants performed the Go/NoGo task with simultaneous electroencephalogram (EEG) recording.
Results
By stimulating rIFG and preSMA with 6 Hz tACS, we were not able to modulate either behavioral performance nor the EEG correlate. Interestingly, 20 Hz tACS over the rIFG significantly increased theta activity, however without behavioral effects. This increased theta activity did not coincide with the stimulation area and was localized in the fronto-central and centro-parietal areas.
Conclusions
The inclusion of a control frequency is crucial to test for frequency specificity. Our findings are in accordance with previous studies showing that after effects of tACS are not restricted to the stimulation frequency but can also occur in other frequency bands.
期刊介绍:
Neurophysiologie Clinique / Clinical Neurophysiology (NCCN) is the official organ of the French Society of Clinical Neurophysiology (SNCLF). This journal is published 6 times a year, and is aimed at an international readership, with articles written in English. These can take the form of original research papers, comprehensive review articles, viewpoints, short communications, technical notes, editorials or letters to the Editor. The theme is the neurophysiological investigation of central or peripheral nervous system or muscle in healthy humans or patients. The journal focuses on key areas of clinical neurophysiology: electro- or magneto-encephalography, evoked potentials of all modalities, electroneuromyography, sleep, pain, posture, balance, motor control, autonomic nervous system, cognition, invasive and non-invasive neuromodulation, signal processing, bio-engineering, functional imaging.