Sercan Altundemir, S. Samaneh Lashkarinia, Kerem Pekkan, A. Kerem Uğuz
{"title":"FEBio 中老化颈动脉模型的间隙流、压力和残余应力。","authors":"Sercan Altundemir, S. Samaneh Lashkarinia, Kerem Pekkan, A. Kerem Uğuz","doi":"10.1007/s10237-023-01766-7","DOIUrl":null,"url":null,"abstract":"<div><p>Vascular smooth muscle cells (VSMCs) are subject to interstitial flow-induced shear stress, which is a critical parameter in cardiovascular disease progression. Transmural pressure loading and residual stresses alter the hydraulic conductivity of the arterial layers and modulate the interstitial fluid flux through the arterial wall. In this paper, a biphasic multilayer model of a common carotid artery (CCA) with anisotropic fiber-reinforced soft tissue and strain-dependent permeability is developed in FEBio software. After the verification of the numerical predictions, age-related arterial thickening and stiffening effects on arterial deformation and interstitial flow are computed under physiological geometry and physical parameters. We found that circumferential residual stress shifts outward in each layer and its gradient increases up to 6 times with aging. Internally pressurized CCA displays nonlinear deformation. In the aged artery, the circumferential stress becomes greater on the media layer (82–158 kPa) and lower on the intima and adventitia (19–23 kPa and 25–28 kPa, respectively). The radial compression of the intima reduces the total hydraulic conductivity by 48% in the young and 16% in the aged arterial walls. Consequently, the average radial interstitial flux increases with pressure by 14% in the young and 91% in the aged arteries. Accordingly, the flow shear stress experienced by the VSMCs becomes more significant for aged arteries, which may accelerate cardiovascular disease progression compared to young arteries.</p></div>","PeriodicalId":489,"journal":{"name":"Biomechanics and Modeling in Mechanobiology","volume":"23 1","pages":"179 - 192"},"PeriodicalIF":3.0000,"publicationDate":"2023-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Interstitial flow, pressure and residual stress in the aging carotid artery model in FEBio\",\"authors\":\"Sercan Altundemir, S. Samaneh Lashkarinia, Kerem Pekkan, A. Kerem Uğuz\",\"doi\":\"10.1007/s10237-023-01766-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Vascular smooth muscle cells (VSMCs) are subject to interstitial flow-induced shear stress, which is a critical parameter in cardiovascular disease progression. Transmural pressure loading and residual stresses alter the hydraulic conductivity of the arterial layers and modulate the interstitial fluid flux through the arterial wall. In this paper, a biphasic multilayer model of a common carotid artery (CCA) with anisotropic fiber-reinforced soft tissue and strain-dependent permeability is developed in FEBio software. After the verification of the numerical predictions, age-related arterial thickening and stiffening effects on arterial deformation and interstitial flow are computed under physiological geometry and physical parameters. We found that circumferential residual stress shifts outward in each layer and its gradient increases up to 6 times with aging. Internally pressurized CCA displays nonlinear deformation. In the aged artery, the circumferential stress becomes greater on the media layer (82–158 kPa) and lower on the intima and adventitia (19–23 kPa and 25–28 kPa, respectively). The radial compression of the intima reduces the total hydraulic conductivity by 48% in the young and 16% in the aged arterial walls. Consequently, the average radial interstitial flux increases with pressure by 14% in the young and 91% in the aged arteries. Accordingly, the flow shear stress experienced by the VSMCs becomes more significant for aged arteries, which may accelerate cardiovascular disease progression compared to young arteries.</p></div>\",\"PeriodicalId\":489,\"journal\":{\"name\":\"Biomechanics and Modeling in Mechanobiology\",\"volume\":\"23 1\",\"pages\":\"179 - 192\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2023-09-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biomechanics and Modeling in Mechanobiology\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10237-023-01766-7\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomechanics and Modeling in Mechanobiology","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s10237-023-01766-7","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOPHYSICS","Score":null,"Total":0}
Interstitial flow, pressure and residual stress in the aging carotid artery model in FEBio
Vascular smooth muscle cells (VSMCs) are subject to interstitial flow-induced shear stress, which is a critical parameter in cardiovascular disease progression. Transmural pressure loading and residual stresses alter the hydraulic conductivity of the arterial layers and modulate the interstitial fluid flux through the arterial wall. In this paper, a biphasic multilayer model of a common carotid artery (CCA) with anisotropic fiber-reinforced soft tissue and strain-dependent permeability is developed in FEBio software. After the verification of the numerical predictions, age-related arterial thickening and stiffening effects on arterial deformation and interstitial flow are computed under physiological geometry and physical parameters. We found that circumferential residual stress shifts outward in each layer and its gradient increases up to 6 times with aging. Internally pressurized CCA displays nonlinear deformation. In the aged artery, the circumferential stress becomes greater on the media layer (82–158 kPa) and lower on the intima and adventitia (19–23 kPa and 25–28 kPa, respectively). The radial compression of the intima reduces the total hydraulic conductivity by 48% in the young and 16% in the aged arterial walls. Consequently, the average radial interstitial flux increases with pressure by 14% in the young and 91% in the aged arteries. Accordingly, the flow shear stress experienced by the VSMCs becomes more significant for aged arteries, which may accelerate cardiovascular disease progression compared to young arteries.
期刊介绍:
Mechanics regulates biological processes at the molecular, cellular, tissue, organ, and organism levels. A goal of this journal is to promote basic and applied research that integrates the expanding knowledge-bases in the allied fields of biomechanics and mechanobiology. Approaches may be experimental, theoretical, or computational; they may address phenomena at the nano, micro, or macrolevels. Of particular interest are investigations that
(1) quantify the mechanical environment in which cells and matrix function in health, disease, or injury,
(2) identify and quantify mechanosensitive responses and their mechanisms,
(3) detail inter-relations between mechanics and biological processes such as growth, remodeling, adaptation, and repair, and
(4) report discoveries that advance therapeutic and diagnostic procedures.
Especially encouraged are analytical and computational models based on solid mechanics, fluid mechanics, or thermomechanics, and their interactions; also encouraged are reports of new experimental methods that expand measurement capabilities and new mathematical methods that facilitate analysis.