Z Sun, C Gu, X Wang, A Shang, W Quan, J Wu, P Ji, Y Yao, W Liu, D Li
{"title":"一种新型的二价抗-MET/PD-1双特异性抗体对c-MET/PD-L1阳性结直肠癌癌症表现出强大的细胞毒性。","authors":"Z Sun, C Gu, X Wang, A Shang, W Quan, J Wu, P Ji, Y Yao, W Liu, D Li","doi":"10.1007/s10637-023-01381-4","DOIUrl":null,"url":null,"abstract":"<p><p>Previously, we generated a novel bispecific antibody (BsAb) simultaneously targeting both c-MET and PD-1 (PDCD1), which can bridge T cells and c-MET positive tumor cells. However, the specific mechanisms and antitumor activities of the BsAb against c-MET/PD-L1 (CD274) positive colorectal cancer (CRC) is not completely understood. In this study, in addition to the tumor intrinsic mechanism investigation with molecular biology assay in vitro, a humanized mouse model was used to evaluate antitumor activity of the BsAb in vivo. The BsAb could inhibit c-MET/PD-L1<sup>+</sup> CRC cell migration and show strong antitumor activity against HCT116 tumors in mice, potentially by inducing the degradation of c-MET protein in a dose and time-dependent manner. The BsAb could suppress the phosphorylation of c-MET downstream proteins GRB2-associated-binding protein 1 (Gab1) and focal adhesion kinase (FAK). Considering the tumor extrinsic mechanism, the BsAb may promote phagocytosis of macrophage. Furthermore, the level of plasma exosomal-c-MET/PD-L1 is able to distinguish CRC patients from healthy controls. In summary, the BsAb exhibited potent anti-tumor activities by two distinguished mechanisms: inhibition of c-MET signal transduction and promotion of macrophage-mediated phagocytosis. Our BsAb may provide a novel therapeutic agent for patients with c-MET/PD-L1<sup>+</sup> CRC, and the status of exosomal-c-MET/PD-L1 can serve as a biomarker to predict responsiveness to treatment of our BsAb.</p>","PeriodicalId":14513,"journal":{"name":"Investigational New Drugs","volume":" ","pages":"737-750"},"PeriodicalIF":3.0000,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A novel bivalent anti-c-MET/PD-1 bispecific antibody exhibits potent cytotoxicity against c-MET/PD-L1-positive colorectal cancer.\",\"authors\":\"Z Sun, C Gu, X Wang, A Shang, W Quan, J Wu, P Ji, Y Yao, W Liu, D Li\",\"doi\":\"10.1007/s10637-023-01381-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Previously, we generated a novel bispecific antibody (BsAb) simultaneously targeting both c-MET and PD-1 (PDCD1), which can bridge T cells and c-MET positive tumor cells. However, the specific mechanisms and antitumor activities of the BsAb against c-MET/PD-L1 (CD274) positive colorectal cancer (CRC) is not completely understood. In this study, in addition to the tumor intrinsic mechanism investigation with molecular biology assay in vitro, a humanized mouse model was used to evaluate antitumor activity of the BsAb in vivo. The BsAb could inhibit c-MET/PD-L1<sup>+</sup> CRC cell migration and show strong antitumor activity against HCT116 tumors in mice, potentially by inducing the degradation of c-MET protein in a dose and time-dependent manner. The BsAb could suppress the phosphorylation of c-MET downstream proteins GRB2-associated-binding protein 1 (Gab1) and focal adhesion kinase (FAK). Considering the tumor extrinsic mechanism, the BsAb may promote phagocytosis of macrophage. Furthermore, the level of plasma exosomal-c-MET/PD-L1 is able to distinguish CRC patients from healthy controls. In summary, the BsAb exhibited potent anti-tumor activities by two distinguished mechanisms: inhibition of c-MET signal transduction and promotion of macrophage-mediated phagocytosis. Our BsAb may provide a novel therapeutic agent for patients with c-MET/PD-L1<sup>+</sup> CRC, and the status of exosomal-c-MET/PD-L1 can serve as a biomarker to predict responsiveness to treatment of our BsAb.</p>\",\"PeriodicalId\":14513,\"journal\":{\"name\":\"Investigational New Drugs\",\"volume\":\" \",\"pages\":\"737-750\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2023-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Investigational New Drugs\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1007/s10637-023-01381-4\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2023/8/30 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"ONCOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Investigational New Drugs","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s10637-023-01381-4","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/8/30 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"ONCOLOGY","Score":null,"Total":0}
A novel bivalent anti-c-MET/PD-1 bispecific antibody exhibits potent cytotoxicity against c-MET/PD-L1-positive colorectal cancer.
Previously, we generated a novel bispecific antibody (BsAb) simultaneously targeting both c-MET and PD-1 (PDCD1), which can bridge T cells and c-MET positive tumor cells. However, the specific mechanisms and antitumor activities of the BsAb against c-MET/PD-L1 (CD274) positive colorectal cancer (CRC) is not completely understood. In this study, in addition to the tumor intrinsic mechanism investigation with molecular biology assay in vitro, a humanized mouse model was used to evaluate antitumor activity of the BsAb in vivo. The BsAb could inhibit c-MET/PD-L1+ CRC cell migration and show strong antitumor activity against HCT116 tumors in mice, potentially by inducing the degradation of c-MET protein in a dose and time-dependent manner. The BsAb could suppress the phosphorylation of c-MET downstream proteins GRB2-associated-binding protein 1 (Gab1) and focal adhesion kinase (FAK). Considering the tumor extrinsic mechanism, the BsAb may promote phagocytosis of macrophage. Furthermore, the level of plasma exosomal-c-MET/PD-L1 is able to distinguish CRC patients from healthy controls. In summary, the BsAb exhibited potent anti-tumor activities by two distinguished mechanisms: inhibition of c-MET signal transduction and promotion of macrophage-mediated phagocytosis. Our BsAb may provide a novel therapeutic agent for patients with c-MET/PD-L1+ CRC, and the status of exosomal-c-MET/PD-L1 can serve as a biomarker to predict responsiveness to treatment of our BsAb.
期刊介绍:
The development of new anticancer agents is one of the most rapidly changing aspects of cancer research. Investigational New Drugs provides a forum for the rapid dissemination of information on new anticancer agents. The papers published are of interest to the medical chemist, toxicologist, pharmacist, pharmacologist, biostatistician and clinical oncologist. Investigational New Drugs provides the fastest possible publication of new discoveries and results for the whole community of scientists developing anticancer agents.