Gongwei Liu, Ke Zhang, Hanxuan Gong, Kaiyao Yang, Xiaoyu Wang, Guangchen Zhou, Wenyuan Cui, Yulin Chen, Yuxin Yang
{"title":"白蚁肠道枯草芽孢杆菌RLI2019的全基因组测序和木质纤维素降解潜力","authors":"Gongwei Liu, Ke Zhang, Hanxuan Gong, Kaiyao Yang, Xiaoyu Wang, Guangchen Zhou, Wenyuan Cui, Yulin Chen, Yuxin Yang","doi":"10.1186/s13068-023-02375-3","DOIUrl":null,"url":null,"abstract":"<div><h3>Background</h3><p>Lignocellulosic biomass is the most abundant and renewable terrestrial raw material for conversion into bioproducts and biofuels. However, the low utilization efficiency of lignocellulose causes environmental pollution and resource waste, which limits the large-scale application of bioconversion. The degradation of lignocellulose by microorganisms is an efficient and cost-effective way to overcome the challenge of utilizing plant biomass resources. This work aimed to screen valuable cellulolytic bacteria, explore its molecular mechanism from genomic insights, and investigate the ability of the strain to biodegrade wheat straw.</p><h3>Results</h3><p><i>Bacillus subtilis</i> (<i>B. subtilis</i>) RLI2019 was isolated from the intestine of <i>Reticulitermes labralis</i>. The strain showed comprehensive enzyme activities related to lignocellulose degradation, which were estimated as 4.06, 1.97, 4.12, 0.74, and 17.61 U/mL for endoglucanase, β-glucosidase, PASC enzyme, filter paper enzyme, and xylanase, respectively. Whole genome sequencing was performed to better understand the genetic mechanism of cellulose degradation. The genome size of <i>B. subtilis</i> RLI2019 was 4,195,306 bp with an average GC content of 43.54%, and the sequence characteristics illustrated an extremely high probability (99.41%) as a probiotic. The genome contained 4,381 protein coding genes with an average GC content of 44.20%, of which 145 genes were classified into six carbohydrate-active enzyme (CAZyme) families and 57 subfamilies. Eight cellulose metabolism enzyme-related genes and nine hemicellulose metabolism enzyme-related genes were annotated by the CAZyme database. The starch and sucrose metabolic pathway (ko00500) was the most enriched with 46 genes in carbohydrate metabolism. <i>B. subtilis</i> RLI2019 was co-cultured with wheat straw for 7 days of fermentation, the contents of neutral detergent fiber, acid detergent fiber, hemicellulose, and lignin were significantly reduced by 5.8%, 10.3%, 1.0%, and 4.7%, respectively. Moreover, the wheat straw substrate exhibited 664.9 μg/mL of reducing sugars, 1.22 U/mL and 6.68 U/mL of endoglucanase and xylanase activities, respectively. Furthermore, the fiber structures were effectively disrupted, and the cellulose crystallinity was significantly reduced from 40.2% to 36.9%.</p><h3>Conclusions</h3><p>The complex diversity of CAZyme composition mainly contributed to the strong cellulolytic attribute of <i>B. subtilis</i> RLI2019. These findings suggest that <i>B. subtilis</i> RLI2019 has favorable potential for biodegradation applications, thus it can be regarded as a promising candidate bacterium for lignocellulosic biomass degradation.</p></div>","PeriodicalId":494,"journal":{"name":"Biotechnology for Biofuels","volume":"16 1","pages":""},"PeriodicalIF":6.1000,"publicationDate":"2023-08-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10439612/pdf/","citationCount":"1","resultStr":"{\"title\":\"Whole genome sequencing and the lignocellulose degradation potential of Bacillus subtilis RLI2019 isolated from the intestine of termites\",\"authors\":\"Gongwei Liu, Ke Zhang, Hanxuan Gong, Kaiyao Yang, Xiaoyu Wang, Guangchen Zhou, Wenyuan Cui, Yulin Chen, Yuxin Yang\",\"doi\":\"10.1186/s13068-023-02375-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><h3>Background</h3><p>Lignocellulosic biomass is the most abundant and renewable terrestrial raw material for conversion into bioproducts and biofuels. However, the low utilization efficiency of lignocellulose causes environmental pollution and resource waste, which limits the large-scale application of bioconversion. The degradation of lignocellulose by microorganisms is an efficient and cost-effective way to overcome the challenge of utilizing plant biomass resources. This work aimed to screen valuable cellulolytic bacteria, explore its molecular mechanism from genomic insights, and investigate the ability of the strain to biodegrade wheat straw.</p><h3>Results</h3><p><i>Bacillus subtilis</i> (<i>B. subtilis</i>) RLI2019 was isolated from the intestine of <i>Reticulitermes labralis</i>. The strain showed comprehensive enzyme activities related to lignocellulose degradation, which were estimated as 4.06, 1.97, 4.12, 0.74, and 17.61 U/mL for endoglucanase, β-glucosidase, PASC enzyme, filter paper enzyme, and xylanase, respectively. Whole genome sequencing was performed to better understand the genetic mechanism of cellulose degradation. The genome size of <i>B. subtilis</i> RLI2019 was 4,195,306 bp with an average GC content of 43.54%, and the sequence characteristics illustrated an extremely high probability (99.41%) as a probiotic. The genome contained 4,381 protein coding genes with an average GC content of 44.20%, of which 145 genes were classified into six carbohydrate-active enzyme (CAZyme) families and 57 subfamilies. Eight cellulose metabolism enzyme-related genes and nine hemicellulose metabolism enzyme-related genes were annotated by the CAZyme database. The starch and sucrose metabolic pathway (ko00500) was the most enriched with 46 genes in carbohydrate metabolism. <i>B. subtilis</i> RLI2019 was co-cultured with wheat straw for 7 days of fermentation, the contents of neutral detergent fiber, acid detergent fiber, hemicellulose, and lignin were significantly reduced by 5.8%, 10.3%, 1.0%, and 4.7%, respectively. Moreover, the wheat straw substrate exhibited 664.9 μg/mL of reducing sugars, 1.22 U/mL and 6.68 U/mL of endoglucanase and xylanase activities, respectively. Furthermore, the fiber structures were effectively disrupted, and the cellulose crystallinity was significantly reduced from 40.2% to 36.9%.</p><h3>Conclusions</h3><p>The complex diversity of CAZyme composition mainly contributed to the strong cellulolytic attribute of <i>B. subtilis</i> RLI2019. These findings suggest that <i>B. subtilis</i> RLI2019 has favorable potential for biodegradation applications, thus it can be regarded as a promising candidate bacterium for lignocellulosic biomass degradation.</p></div>\",\"PeriodicalId\":494,\"journal\":{\"name\":\"Biotechnology for Biofuels\",\"volume\":\"16 1\",\"pages\":\"\"},\"PeriodicalIF\":6.1000,\"publicationDate\":\"2023-08-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10439612/pdf/\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biotechnology for Biofuels\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://link.springer.com/article/10.1186/s13068-023-02375-3\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biotechnology for Biofuels","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1186/s13068-023-02375-3","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
Whole genome sequencing and the lignocellulose degradation potential of Bacillus subtilis RLI2019 isolated from the intestine of termites
Background
Lignocellulosic biomass is the most abundant and renewable terrestrial raw material for conversion into bioproducts and biofuels. However, the low utilization efficiency of lignocellulose causes environmental pollution and resource waste, which limits the large-scale application of bioconversion. The degradation of lignocellulose by microorganisms is an efficient and cost-effective way to overcome the challenge of utilizing plant biomass resources. This work aimed to screen valuable cellulolytic bacteria, explore its molecular mechanism from genomic insights, and investigate the ability of the strain to biodegrade wheat straw.
Results
Bacillus subtilis (B. subtilis) RLI2019 was isolated from the intestine of Reticulitermes labralis. The strain showed comprehensive enzyme activities related to lignocellulose degradation, which were estimated as 4.06, 1.97, 4.12, 0.74, and 17.61 U/mL for endoglucanase, β-glucosidase, PASC enzyme, filter paper enzyme, and xylanase, respectively. Whole genome sequencing was performed to better understand the genetic mechanism of cellulose degradation. The genome size of B. subtilis RLI2019 was 4,195,306 bp with an average GC content of 43.54%, and the sequence characteristics illustrated an extremely high probability (99.41%) as a probiotic. The genome contained 4,381 protein coding genes with an average GC content of 44.20%, of which 145 genes were classified into six carbohydrate-active enzyme (CAZyme) families and 57 subfamilies. Eight cellulose metabolism enzyme-related genes and nine hemicellulose metabolism enzyme-related genes were annotated by the CAZyme database. The starch and sucrose metabolic pathway (ko00500) was the most enriched with 46 genes in carbohydrate metabolism. B. subtilis RLI2019 was co-cultured with wheat straw for 7 days of fermentation, the contents of neutral detergent fiber, acid detergent fiber, hemicellulose, and lignin were significantly reduced by 5.8%, 10.3%, 1.0%, and 4.7%, respectively. Moreover, the wheat straw substrate exhibited 664.9 μg/mL of reducing sugars, 1.22 U/mL and 6.68 U/mL of endoglucanase and xylanase activities, respectively. Furthermore, the fiber structures were effectively disrupted, and the cellulose crystallinity was significantly reduced from 40.2% to 36.9%.
Conclusions
The complex diversity of CAZyme composition mainly contributed to the strong cellulolytic attribute of B. subtilis RLI2019. These findings suggest that B. subtilis RLI2019 has favorable potential for biodegradation applications, thus it can be regarded as a promising candidate bacterium for lignocellulosic biomass degradation.
期刊介绍:
Biotechnology for Biofuels is an open access peer-reviewed journal featuring high-quality studies describing technological and operational advances in the production of biofuels, chemicals and other bioproducts. The journal emphasizes understanding and advancing the application of biotechnology and synergistic operations to improve plants and biological conversion systems for the biological production of these products from biomass, intermediates derived from biomass, or CO2, as well as upstream or downstream operations that are integral to biological conversion of biomass.
Biotechnology for Biofuels focuses on the following areas:
• Development of terrestrial plant feedstocks
• Development of algal feedstocks
• Biomass pretreatment, fractionation and extraction for biological conversion
• Enzyme engineering, production and analysis
• Bacterial genetics, physiology and metabolic engineering
• Fungal/yeast genetics, physiology and metabolic engineering
• Fermentation, biocatalytic conversion and reaction dynamics
• Biological production of chemicals and bioproducts from biomass
• Anaerobic digestion, biohydrogen and bioelectricity
• Bioprocess integration, techno-economic analysis, modelling and policy
• Life cycle assessment and environmental impact analysis