EcologiesPub Date : 2022-11-04DOI: 10.3390/ecologies3040037
T. Davis, Matt J Nimbs
{"title":"Susceptibility of Tidal Pool Fish Assemblages to Climate Change","authors":"T. Davis, Matt J Nimbs","doi":"10.3390/ecologies3040037","DOIUrl":"https://doi.org/10.3390/ecologies3040037","url":null,"abstract":"There is a need for improved understanding of how climate-change driven rises in sea level and increased ocean temperatures will affect fish assemblages in rocky shore tidal pools. Rising sea levels are predicted to alter habitat availability and increasing ocean temperatures will drive tropicalisation, both of which are likely to alter tidal pool fish assemblages. Consequently, we examined changes in fish assemblages in tidal pools at four sites in Coffs Harbour, Australia, using baited video sampling. Data were collected seasonally at each site, in pools at differing tidal elevations. We identified significant differences in tidal pool fish assemblages among elevations and found that assemblages exhibited cyclic seasonal patterns. Modelling identified that ocean temperature was the most powerful factor for explaining variations in assemblages, followed by pool area and pool elevation. Results highlight that distinct fish assemblages occur in tidal pools at different elevations and indicate that assemblages at higher elevations could be squeezed out by rising sea levels and by increased competition from tropical fish species. Future conservation assessments are needed to determine whether latitudinal and vertical range shifts for tidal pool fishes are possible, with facilitation of these range shifts needed to address displacement of tidal pool fishes by rising sea levels and ocean temperatures.","PeriodicalId":72866,"journal":{"name":"Ecologies","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2022-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"45323145","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
EcologiesPub Date : 2022-10-18DOI: 10.3390/ecologies3040035
M. Ram, Aradhana Sahu, S. Tikadar, D. Gadhavi, T. A. Rather, L. Jhala, Y. Zala
{"title":"Home Range, Movement and Activity Patterns of Six vulture Species Using Satellite Telemetry in Saurashtra landscape, Gujarat, India","authors":"M. Ram, Aradhana Sahu, S. Tikadar, D. Gadhavi, T. A. Rather, L. Jhala, Y. Zala","doi":"10.3390/ecologies3040035","DOIUrl":"https://doi.org/10.3390/ecologies3040035","url":null,"abstract":"The information on the ranging behaviour and migration pattern of vultures is of critical conservation importance. Vultures’ range over vast areas in human-dominated landscapes where anthropogenic activities may influence their long-term survival. This paper uses the satellite telemetry of 11 individuals of six vulture species to assess their home ranges and seasonal movement patterns. The study aimed to find daily and monthly distances covered by vultures, their home range size, and the influence of breeding season on resource utilisation and activity rates. A total of 114,820 locations were collected between October 2020 and November 2021. The results indicate that the size of the core area is smaller during the breeding season of the resident species, such as the Indian vulture (Gyps indicus), white-rumped vulture (Gyps bengalensis), and red-headed vulture (Sarcogyps calvus) than the non-breeding season. vulture’s daily and monthly movement (mean) also decreased in the breeding season. The annual home range and core areas, calculated as 95% and 50%Utilisation Distribution differed between breeding and non-breeding seasons. The migratory vultures moved significantly longer distances across days and months than the resident species. Their annual migration patterns also differed with respect to time and migration routes.","PeriodicalId":72866,"journal":{"name":"Ecologies","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2022-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"46753522","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
EcologiesPub Date : 2022-10-06DOI: 10.3390/ecologies3040033
S. W. Sintondji, Z. Sohou, K. Baetens, G. Lacroix, E. Fiogbé
{"title":"Characterization of a West African Coastal Lagoon System: Case of Lake Nokoué with Its Inlet (Cotonou, South Benin)","authors":"S. W. Sintondji, Z. Sohou, K. Baetens, G. Lacroix, E. Fiogbé","doi":"10.3390/ecologies3040033","DOIUrl":"https://doi.org/10.3390/ecologies3040033","url":null,"abstract":"The purpose of this work was to investigate the physical and chemical dynamics of Lake Nokoué for its efficient management. For this purpose, two sampling campaigns per month from five stations (North, South, Central, East and West) were conducted for a period of one year (November 2020 to November 2021). Physic and chemical parameters (temperature, salinity, depth, water transparency, pH, dissolved oxygen and total dissolved solids) were measured and wet substrate samples were collected to study the granulometry. Data analysis revealed that Lake Nokoué is mainly affected by two regimes: flooding and low water. Flooding, which is not directly related to rainfall, did not begin until one month after the major rainy season in June. The sources that contributed to the flooding of Lake Nokoué were the freshwater tributaries coming mainly from the Ouèmé River and the flow of the Sô River from August to November. The inflow of fresh water contributed to the decrease in salinity and transparency of the lake from the east to the south. During the low water period (from December to July), Lake Nokoué is characterized by an increase in salinity and transparency from the south to the northeast due to the massive intrusion of sea water into the lake. The highest dissolved oxygen levels are observed in the south and center (5.92 ± 0.46 mg/L) while it varies greatly in the north and west (Eichhornia crassipes concentration zone) during flooding. The average annual depth of Lake Nokoué was 1.47 ± 0.66 m with an average annual pH of 6.85 ± 0.56.","PeriodicalId":72866,"journal":{"name":"Ecologies","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2022-10-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"46198986","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
EcologiesPub Date : 2022-10-02DOI: 10.3390/ecologies3040032
T. Sullivan, D. S. Sullivan
{"title":"Long-Term Changes in Abundance and Composition of Forest-Floor Small Mammal Communities in a Landscape with Cumulative Clearcutting","authors":"T. Sullivan, D. S. Sullivan","doi":"10.3390/ecologies3040032","DOIUrl":"https://doi.org/10.3390/ecologies3040032","url":null,"abstract":"Responses of forest-floor small mammals to clearcutting are species-specific with generalists occupying a range of habitats, and specialists persisting on clearcuts for variable periods. We investigated the responses in abundance and species composition of small mammal communities to cumulative clearcutting of coniferous forests on a landscape that had four independent clearcutting events (Periods 1 to 4) over a 42-year interval from 1979 to 2020 in south-central British Columbia, Canada. We ask if the small mammal communities have changed significantly over these decades owing to removal of old-growth forest by clearcut harvesting. Hypotheses (H) predicted that the small mammal community would (H1) increase in abundance, species richness, and diversity on new clearcuts owing to the availability of early seral post-harvest habitats from cumulative clearcutting; and (H2) have higher mean abundance, species richness, and species diversity in clearcut than uncut forest sites, owing to availability of vegetative food and cover. A third hypothesis (H3) predicted that abundance of (i) early seral vegetation (herbs and shrubs) and (ii) small mammal populations, will be greater in ungrazed clearcut sites than in those grazed by cattle (Bos taurus). Mean total numbers of small mammals on new clearcuts declined in Periods 3 and 4, and hence did not support the abundance part of H1. Much of this decline was owing to low numbers of the long-tailed vole (Microtus longicaudus) and meadow vole (M. pennsylvanicus). Two generalist species: the deer mouse (Peromyscus maniculatus) and northwestern chipmunk (Neotamias amoenus), contributed to high mean species richness and diversity in Periods 2 and 3 before these metrics declined in Period 4, and hence partly supported H1. The similarity in mean total numbers of small mammals in Periods 2 to 4 did not support the abundance prediction of H2 that total numbers would be higher in clearcut than uncut forest sites. Higher mean species richness (Periods 2 and 3) and diversity (Period 3) measurements on clearcut than forest sites, particularly in the early post-harvest years, did support these parts of H2. The vegetation part (i) of H3 was not supported for herbaceous plants but it was for shrubs. The small mammal part (ii) of H3 that populations would be higher in ungrazed than grazed clearcut sites was supported for abundance but not for species richness or diversity. The decline and near disappearance of both species of Microtus was possibly related to the reduction in plant community abundance and structure from grazing (at least for shrubs) and potentially from drought effects associated with climate change. Loss of microtines from these early seral ecosystems may have profound negative effects on various ecological functions and predator communities.","PeriodicalId":72866,"journal":{"name":"Ecologies","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2022-10-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"47588181","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
EcologiesPub Date : 2022-09-18DOI: 10.3390/ecologies3030030
M. Hanke, Haille Leija, Robert A. S. Laroche, Shailee Modi, Erin Culver-Miller, R. Sanchez, Neha Bobby
{"title":"Localized Placement of Breakwater Reefs Influences Oyster Populations and Their Resilience after Hurricane Harvey","authors":"M. Hanke, Haille Leija, Robert A. S. Laroche, Shailee Modi, Erin Culver-Miller, R. Sanchez, Neha Bobby","doi":"10.3390/ecologies3030030","DOIUrl":"https://doi.org/10.3390/ecologies3030030","url":null,"abstract":"Populations of the eastern oyster (Crassostrea virginica) have been historically declining due to both natural and anthropogenic stressors. In response, oyster reefs have been created with many different approaches. This study utilized intertidal reefs constructed with oyster shells recycled from local restaurants to provide oyster settlement substrate, reef-associated faunal habitat, and a barrier to prevent marsh erosion. The objective of this study was to determine how oyster population characteristics changed over four years (2016–2019) on five different reefs within Sweetwater Lake, Galveston Bay, Texas, with a secondary objective to examine how oyster populations responded after Hurricane Harvey. Over the study period, five different reefs were sampled each summer by removing five bags per reef to determine oyster abundance and size demography. For the three years of the study (2017–2019), we also quantified oyster spat recruitment to the reefs. Oyster abundance and size (shell height) varied interactively by year and reef number, whereas oyster recruitment was significantly lower following Hurricane Harvey and then returned to pre-storm levels. Our results further highlight the importance of reef placement for breakwater-style reefs, as it appears the hydrodynamics within Sweetwater Lake influenced both oyster abundance and size among individual reefs. While the created reefs receive limited larval influx due to the narrow opening between Sweetwater Lake and Galveston Bay proper, this limited connectivity seemed to prevent mass mortality from the freshwater influx from Hurricane Harvey. Therefore, projects creating oyster reefs should consider local and regional landscape factors for the long-term success of oyster populations and robustness to natural disasters.","PeriodicalId":72866,"journal":{"name":"Ecologies","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2022-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"47647428","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
EcologiesPub Date : 2022-09-15DOI: 10.3390/ecologies3030029
Phillip N. Hogan, S. Grubbs
{"title":"Distributional Trends and Species Richness of Maryland, USA, Stoneflies (Insecta: Plecoptera), with an Emphasis on the Appalachian Region","authors":"Phillip N. Hogan, S. Grubbs","doi":"10.3390/ecologies3030029","DOIUrl":"https://doi.org/10.3390/ecologies3030029","url":null,"abstract":"Faunistic studies of regional biodiversity of aquatic insects are increasing in importance as declines are noted globally. Federal and state government conservation attempts for rare and threatened species are predicated upon the initial research of specialized taxonomists and trained field biologists. The reporting of aquatic insect occurrence data provides a baseline for conservation agencies to compare water quality monitoring studies. Updated field work, literature reviews, and database queries for stoneflies from the mid-Atlantic United States of America state of Maryland necessitated an assessment of species diversity for the state. Seven new state records and one new literature record are presented, bringing the total number of species to 122. Chao1 estimates of species richness are presented for diversity hotspots and the state as a whole, indicating that increased sampling is still necessary to fully understand diversity patterns. Accompanying are assessments of elevation trends and adult presence patterns within nine families. Collections are predominantly restricted to the Appalachian region. Herein, we direct future efforts to focus on understudied regions. An outline of distribution knowledge for species is presented to inform upcoming State Wildlife Action Plans.","PeriodicalId":72866,"journal":{"name":"Ecologies","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2022-09-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"48891171","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
EcologiesPub Date : 2022-09-13DOI: 10.3390/ecologies3030028
N. D. Henderson, A. Christian
{"title":"Freshwater Invertebrate Assemblage Composition and Water Quality Assessment of an Urban Coastal Watershed in the Context of Land-Use Land-Cover and Reach-Scale Physical Habitat","authors":"N. D. Henderson, A. Christian","doi":"10.3390/ecologies3030028","DOIUrl":"https://doi.org/10.3390/ecologies3030028","url":null,"abstract":"Stream ecosystems provide invaluable ecosystem services but are highly impacted ecosystems in need of water quality monitoring for habitat change impacts. Freshwater macroinvertebrate (FWI) assemblages have been shown to be good indicators of water quality and are known to be vulnerable to land-use land cover (LULC) and other habitat changes. The goal of this case study was to use an existing dominant LULC analysis in the Neponset River watershed, Massachusetts, USA, as LULC sampling treatment groups to deliberately capture the influence of these LULC effects on meso-scale habitat quality, FWI assemblages, and FWI water quality indices at eight sampling reaches. To achieve this goal, we collected physical habitat measurements and FWI samples in the summers of 2010 and 2012 at eight reach-scale stations spread across four previously determined LULC sub-watershed types (forest, residential, industrial, and golf) in the watershed. We expected that LULC change would influence the habitat quality, which would influence the FWI assemblage water quality scores and composition. We also expected that the water quality at these LULC sub-watershed types would be reflected in the FWI assemblage composition. We identified five major findings from our study. Our first finding was that the habitat quality in the Neponset River watershed was somewhat degraded relative to pristine conditions. Our second finding was that our habitat characterization analysis reflected some separation of our reach-scale macrohabitat types at land-use land-cover treatment stations with some correlations with microhabitat variables. Our third finding was that the water quality base on FWI assemblages was generally degraded in reference to pristine conditions. Our fourth finding was that, contrary to our expectations, there was no significant correlation between our reach-scale EPA habitat quality scores and FWI water quality scores. Our fifth finding was that our FWI assemblage NMS showed separation of land-use land-cover sampling stations and that that low pollution-tolerant taxa dominated some of our LULC sampling treatment stations and influenced NMS groupings.","PeriodicalId":72866,"journal":{"name":"Ecologies","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2022-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"45933950","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
EcologiesPub Date : 2022-09-01DOI: 10.3390/ecologies3030027
M. Tiawoun, P. Malan, A. A. Comole
{"title":"Effects of Soil Properties on the Distribution of Woody Plants in Communally Managed Rangelands in Ngaka Modiri Molema District, North-West Province, South Africa","authors":"M. Tiawoun, P. Malan, A. A. Comole","doi":"10.3390/ecologies3030027","DOIUrl":"https://doi.org/10.3390/ecologies3030027","url":null,"abstract":"Soil properties are important drivers of species distribution and community structure in grassland. This study was undertaken to assess the influence of soil properties on woody plant distribution around six selected communally managed rangelands in the District. At each communal rangeland, a total of 25 plots of 20 × 20 m were surveyed to record the density, frequency, and composition of woody species. Soil samples were collected for thirteen soil variables. A Tukey HSD (Tukey’s honestly significant difference) post hoc test was used to compare soil properties and canonical correspondence analysis (CCA) to relate the soil properties to the woody species distribution. The study recorded a total of 17 woody species in 9 families. Fabaceae was the most dominant family, and Senegalia mellifera was the most abundant and frequent encroaching species. Most of the species were native, whereas Prosopis velutina was the only invasive alien species recorded. Senegalia mellifera, P. velutina, and Terminalia sericea were considered the most encroaching in the study sites, with densities exceeding 2000 TE ha-1 (i.e., tree equivalent). CCA results exhibited the strong effect of soil variables on the distribution of woody plant species. CCA ordination analyses showed that K was the most influential soil variable on woody species distributions, followed by Mg, CEC, Na, pH, sand, clay and silt. In terms of woody distribution, the CCA diagram showed similarities between Disaneng, Logageng and Tshidilamolomo. This study provides baseline information on woody species diversity for future management of this ecosystem.","PeriodicalId":72866,"journal":{"name":"Ecologies","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2022-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"45122339","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
EcologiesPub Date : 2022-08-12DOI: 10.3390/ecologies3030025
Ram C. Sharma
{"title":"Dominant Species-Physiognomy-Ecological (DSPE) System for the Classification of Plant Ecological Communities from Remote Sensing Images","authors":"Ram C. Sharma","doi":"10.3390/ecologies3030025","DOIUrl":"https://doi.org/10.3390/ecologies3030025","url":null,"abstract":"This paper presents the Dominant Species-Physiognomy-Ecological (DSPE) classification system developed for large-scale differentiation of plant ecological communities from high-spatial resolution remote sensing images. In this system, the plant ecological communities are defined with the inference of dominant species, physiognomy, and shared ecological settings by incorporating multiple strata. The DSPE system was implemented in a cool-temperate climate zone at a regional scale. The deep recurrent neural networks with bootstrap resampling method were employed for evaluating performance of the DSPE classification using Sentinel-2 images at 10 m spatial resolution. The performance of differentiating DSPE communities was compared with the differentiation of higher, Dominant Genus-Physiognomy-Ecological (DGPE) communities. Overall, there was a small difference in the classification between 58 DSPE communities (F1-score = 85.5%, Kappa coefficient = 84.7%) and 45 DGPE communities (F1-score = 86.5%, Kappa coefficient = 85.7%). However, the class wise accuracy analysis showed that all 58 DSPE communities were differentiated with more than 60% accuracy, whereas more than 70% accuracy was obtained for the classification of all 45 DGPE communities. Since all 58 DSPE communities were classified with more than 60% accuracy, the DSPE classification system was still effective for the differentiation of plant ecological communities from satellite images at a regional scale, indicating its applications in other regions in the world.","PeriodicalId":72866,"journal":{"name":"Ecologies","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2022-08-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"48115875","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
EcologiesPub Date : 2022-08-02DOI: 10.3390/ecologies3030024
David H Miller, Matthew Etterson, Leah Oliver, Elizabeth Paulukonis, Nathan Pollesch, S Thomas Purucker, D Christopher Rogers, Sumathy Sinnathamby, Sandy Raimondo
{"title":"Investigating Vernal Pool Fairy Shrimp Exposure to Organophosphate Pesticides: Implications for Population-Level Risk Assessment.","authors":"David H Miller, Matthew Etterson, Leah Oliver, Elizabeth Paulukonis, Nathan Pollesch, S Thomas Purucker, D Christopher Rogers, Sumathy Sinnathamby, Sandy Raimondo","doi":"10.3390/ecologies3030024","DOIUrl":"https://doi.org/10.3390/ecologies3030024","url":null,"abstract":"<p><p>Vernal pool fairy shrimp, <i>Branchinecta lynchi</i>, is a freshwater crustacean endemic to California and Oregon, including California's Central Valley. <i>B. lynchi</i> is listed as a Federally Threatened species under the US Endangered Species Act, and as a vulnerable species on the IUCN Red List. Threats that may negatively impact vernal pool fairy shrimp populations include pesticide applications to agricultural land use (e.g., agrochemicals such as organophosphate pesticides) and climate changes that impact vernal pool hydrology. Pop-GUIDE (Population model Guidance, Use, Interpretation, and Development for Ecological risk assessment) is a comprehensive tool that facilitates development and implementation of population models for ecological risk assessment and can be used to document the model derivation process. We employed Pop-GUIDE to document and facilitate the development of a population model for investigating impacts of organophosphate pesticides on vernal pool fairy shrimp populations in California's Central Valley. The resulting model could be applied in combination with field assessment and laboratory-based chemical analysis to link effects from pesticide exposure to adverse outcomes in populations across their range. <i>B. lynchi</i> has a unique intra-annual life cycle that is largely dependent upon environmental conditions. Future deployment of this population model should include complex scenarios consisting of multiple stressors, whereby the model is used to examine scenarios that combine chemical stress resulting from exposure to pesticides and climate changes.</p>","PeriodicalId":72866,"journal":{"name":"Ecologies","volume":"3 ","pages":"308-322"},"PeriodicalIF":0.0,"publicationDate":"2022-08-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9769362/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9976396","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}