International Conference on Machine Learning, Optimization, and Data Science最新文献

筛选
英文 中文
Designing Combinational Circuits Using a Multi-objective Cartesian Genetic Programming with Adaptive Population Size 基于自适应种群大小的多目标笛卡儿遗传规划设计组合电路
International Conference on Machine Learning, Optimization, and Data Science Pub Date : 2019-09-10 DOI: 10.1007/978-3-030-37599-7_49
Leandro S. Lima, H. Bernardino, H. Barbosa
{"title":"Designing Combinational Circuits Using a Multi-objective Cartesian Genetic Programming with Adaptive Population Size","authors":"Leandro S. Lima, H. Bernardino, H. Barbosa","doi":"10.1007/978-3-030-37599-7_49","DOIUrl":"https://doi.org/10.1007/978-3-030-37599-7_49","url":null,"abstract":"","PeriodicalId":432112,"journal":{"name":"International Conference on Machine Learning, Optimization, and Data Science","volume":"18 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2019-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"117056008","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
A Beam Search for the Longest Common Subsequence Problem Guided by a Novel Approximate Expected Length Calculation 基于一种新的近似期望长度计算的最长公共子序列问题的束搜索
International Conference on Machine Learning, Optimization, and Data Science Pub Date : 2019-09-10 DOI: 10.1007/978-3-030-37599-7_14
M. Djukanović, G. Raidl, C. Blum
{"title":"A Beam Search for the Longest Common Subsequence Problem Guided by a Novel Approximate Expected Length Calculation","authors":"M. Djukanović, G. Raidl, C. Blum","doi":"10.1007/978-3-030-37599-7_14","DOIUrl":"https://doi.org/10.1007/978-3-030-37599-7_14","url":null,"abstract":"","PeriodicalId":432112,"journal":{"name":"International Conference on Machine Learning, Optimization, and Data Science","volume":"1 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2019-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"123396996","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 15
Modification of the k-MXT Algorithm and Its Application to the Geotagged Data Clustering k-MXT算法的改进及其在地理标记数据聚类中的应用
International Conference on Machine Learning, Optimization, and Data Science Pub Date : 2019-09-10 DOI: 10.1007/978-3-030-37599-7_25
A. Stepanova, S. Mironov, S. Sidorov, A. Faizliev
{"title":"Modification of the k-MXT Algorithm and Its Application to the Geotagged Data Clustering","authors":"A. Stepanova, S. Mironov, S. Sidorov, A. Faizliev","doi":"10.1007/978-3-030-37599-7_25","DOIUrl":"https://doi.org/10.1007/978-3-030-37599-7_25","url":null,"abstract":"","PeriodicalId":432112,"journal":{"name":"International Conference on Machine Learning, Optimization, and Data Science","volume":"47 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2019-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"124969044","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Designing an Optimal and Resilient iBGP Overlay with Extended ORRTD 基于扩展ORRTD的最优弹性iBGP覆盖设计
International Conference on Machine Learning, Optimization, and Data Science Pub Date : 2019-09-10 DOI: 10.1007/978-3-030-37599-7_34
C. Mayr, C. Risso, E. Grampín
{"title":"Designing an Optimal and Resilient iBGP Overlay with Extended ORRTD","authors":"C. Mayr, C. Risso, E. Grampín","doi":"10.1007/978-3-030-37599-7_34","DOIUrl":"https://doi.org/10.1007/978-3-030-37599-7_34","url":null,"abstract":"","PeriodicalId":432112,"journal":{"name":"International Conference on Machine Learning, Optimization, and Data Science","volume":"43 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2019-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"116336423","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
Incoherent Submatrix Selection via Approximate Independence Sets in Scalar Product Graphs 基于近似独立集的标量积图非相干子矩阵选择
International Conference on Machine Learning, Optimization, and Data Science Pub Date : 2019-09-10 DOI: 10.1007/978-3-030-37599-7_9
S. Chrétien, Z. Ho
{"title":"Incoherent Submatrix Selection via Approximate Independence Sets in Scalar Product Graphs","authors":"S. Chrétien, Z. Ho","doi":"10.1007/978-3-030-37599-7_9","DOIUrl":"https://doi.org/10.1007/978-3-030-37599-7_9","url":null,"abstract":"","PeriodicalId":432112,"journal":{"name":"International Conference on Machine Learning, Optimization, and Data Science","volume":"132 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2019-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"116344920","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Parameter Optimization of Polynomial Kernel SVM from miniCV 基于miniCV的多项式核支持向量机参数优化
International Conference on Machine Learning, Optimization, and Data Science Pub Date : 2019-09-10 DOI: 10.1007/978-3-030-37599-7_41
Li-Chia Yeh, Chung-Chin Lu
{"title":"Parameter Optimization of Polynomial Kernel SVM from miniCV","authors":"Li-Chia Yeh, Chung-Chin Lu","doi":"10.1007/978-3-030-37599-7_41","DOIUrl":"https://doi.org/10.1007/978-3-030-37599-7_41","url":null,"abstract":"","PeriodicalId":432112,"journal":{"name":"International Conference on Machine Learning, Optimization, and Data Science","volume":"76 6 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2019-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"133504912","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
On Probabilistic k-Richness of the k-Means Algorithms 论k-均值算法的概率k-丰富度
International Conference on Machine Learning, Optimization, and Data Science Pub Date : 2019-09-10 DOI: 10.1007/978-3-030-37599-7_22
R. A. Klopotek, M. Kłopotek
{"title":"On Probabilistic k-Richness of the k-Means Algorithms","authors":"R. A. Klopotek, M. Kłopotek","doi":"10.1007/978-3-030-37599-7_22","DOIUrl":"https://doi.org/10.1007/978-3-030-37599-7_22","url":null,"abstract":"","PeriodicalId":432112,"journal":{"name":"International Conference on Machine Learning, Optimization, and Data Science","volume":"21 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2019-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"134040242","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 5
GRASP Heuristics for the Stochastic Weighted Graph Fragmentation Problem 随机加权图碎片问题的GRASP启发式算法
International Conference on Machine Learning, Optimization, and Data Science Pub Date : 2019-09-10 DOI: 10.1007/978-3-030-37599-7_35
Nicole Rosenstock, J. Piccini, G. Rela, F. Robledo, P. Romero
{"title":"GRASP Heuristics for the Stochastic Weighted Graph Fragmentation Problem","authors":"Nicole Rosenstock, J. Piccini, G. Rela, F. Robledo, P. Romero","doi":"10.1007/978-3-030-37599-7_35","DOIUrl":"https://doi.org/10.1007/978-3-030-37599-7_35","url":null,"abstract":"","PeriodicalId":432112,"journal":{"name":"International Conference on Machine Learning, Optimization, and Data Science","volume":"26 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2019-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"127686810","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
An Information Analysis Approach into Feature Understanding of Convolutional Deep Neural Networks 卷积深度神经网络特征理解中的信息分析方法
International Conference on Machine Learning, Optimization, and Data Science Pub Date : 2019-09-10 DOI: 10.1007/978-3-030-37599-7_4
Zahra Sadeghi
{"title":"An Information Analysis Approach into Feature Understanding of Convolutional Deep Neural Networks","authors":"Zahra Sadeghi","doi":"10.1007/978-3-030-37599-7_4","DOIUrl":"https://doi.org/10.1007/978-3-030-37599-7_4","url":null,"abstract":"","PeriodicalId":432112,"journal":{"name":"International Conference on Machine Learning, Optimization, and Data Science","volume":"6 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2019-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"121421879","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
CoPASample: A Heuristics Based Covariance Preserving Data Augmentation CoPASample:一种基于启发式的保协方差数据增强方法
International Conference on Machine Learning, Optimization, and Data Science Pub Date : 2019-09-10 DOI: 10.1007/978-3-030-37599-7_26
Rishabh Agrawal, Paridhi Kothari
{"title":"CoPASample: A Heuristics Based Covariance Preserving Data Augmentation","authors":"Rishabh Agrawal, Paridhi Kothari","doi":"10.1007/978-3-030-37599-7_26","DOIUrl":"https://doi.org/10.1007/978-3-030-37599-7_26","url":null,"abstract":"","PeriodicalId":432112,"journal":{"name":"International Conference on Machine Learning, Optimization, and Data Science","volume":"150 4 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2019-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"130916693","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信