{"title":"Antiviral Coatings as Continuously Active Disinfectants","authors":"Luisa A. Ikner, Charles P. Gerba","doi":"10.5772/intechopen.101752","DOIUrl":"https://doi.org/10.5772/intechopen.101752","url":null,"abstract":"Antimicrobial surfaces and coatings have been available for many decades and have largely been designed to kill or prevent the growth of bacteria and fungi. Antiviral coatings have become of particular interest more recently during the COVID-19 pandemic as they are designed to act as continuously active disinfectants. The most studied antiviral coatings have been metal-based or are comprised of silane quaternary ammonium formulations. Copper and silver interact directly with proteins and nucleic acids, and influence the production of reactive free radicals. Titanium dioxide acts as a photocatalyst in the presence of water and oxygen to produce free radicals in the presence of UV light or visible light when alloyed with copper or silver. Silane quaternary ammonium formulations can be applied to surfaces using sprays or wipes, and are particularly effective against enveloped viruses. Continuously active disinfectants offer an extra barrier against fomite-mediated transmission of respiratory and enteric viruses to reduce exposure between routine disinfection and cleaning events. To take advantage of this technology, testing methods need to be standardized and the benefits quantified in terms of reduction of virus transmission.","PeriodicalId":400860,"journal":{"name":"Disinfection of Viruses [Working Title]","volume":"1 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2021-12-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"130206259","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Meaghan Hislop, Frances Grinstead, John R. Henneman
{"title":"Hybrid Hydrogen Peroxide for Viral Disinfection","authors":"Meaghan Hislop, Frances Grinstead, John R. Henneman","doi":"10.5772/intechopen.100237","DOIUrl":"https://doi.org/10.5772/intechopen.100237","url":null,"abstract":"Decontamination is often necessary in facilities with sensitive spaces where pathogen elimination is critical. Historically, high concentration vaporized hydrogen peroxide technologies have been applied in these areas for pathogen disinfection. While effective, these high concentration solutions come with inherent risks to human health and safety. Alternatively, one recent innovation is a hybrid hydrogen peroxide system which combines a 7% hydrogen peroxide solution with a calibrated fogging device that delivers a mixture of vaporous and micro aerosolized particles, significantly lowering the risk of exposure to high-concentration hazardous chemicals. Studies performed with this technology demonstrate high level pathogen decontamination across a variety of tested pathogens and substrates. This chapter will cover a brief history of hydrogen peroxide technologies and their application processes; examine the correlations between viral inactivation, viral disinfection, and biological indicators for validation; demonstrate the necessity of dwell time for optimal efficacy; discuss the effects of viral disinfectant use on laboratory surfaces; and examine various studies, including virologic work performed in Biosafety Level 3 facilities and good laboratory practice (GLP) data performed by EPA-approved laboratories. This chapter will provide readers a deeper understanding of essential components and considerations when implementing hydrogen peroxide systems for viral decontamination.","PeriodicalId":400860,"journal":{"name":"Disinfection of Viruses [Working Title]","volume":"10 37 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2021-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"124732765","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Dry Hydrogen Peroxide for Viral Inactivation","authors":"Chris Lee, John R. Henneman","doi":"10.5772/intechopen.100451","DOIUrl":"https://doi.org/10.5772/intechopen.100451","url":null,"abstract":"Hydrogen peroxide is a common antiseptic and disinfectant that is effective against both enveloped and non-enveloped viruses, and it is sometimes used as a fumigant to achieve disinfection of indoor spaces. While it is effective as a fumigant, it cannot be used continuously, allowing for possible recontamination of the treated spaces between applications. A novel method of hydrogen peroxide application, termed “Dry Hydrogen Peroxide” (DHP™), generates molecules of hydrogen peroxide in a true gas state at concentrations low enough to be used continuously within spaces occupied by humans. This chapter explores the efficacy of DHP against a variety of viruses, both enveloped and non-enveloped. On surfaces, DHP achieved a ≥ 99.8% reduction (≥2.62 log10 inactivation) of infectious H1N1 influenza A (enveloped) compared to the control condition within 1 hour, and it achieved a 99.8% reduction (2.62 log10 inactivation) of infectious feline calicivirus (non-enveloped) compared to the control condition within 6 hours. DHP also achieved a 99.8% reduction 2.62 log10 inactivation) of airborne MS2 bacteriophage (non-enveloped) within 1 hour in comparison to the control condition. These inactivation efficacy results, combined with results from recent clinical studies, indicate that DHP represents an effective adjunct technology that can mitigate viral load between intermittent applications of other types of disinfectants.","PeriodicalId":400860,"journal":{"name":"Disinfection of Viruses [Working Title]","volume":"26 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2021-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"123632824","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Silver Ion (Ag+) Formulations with Virucidal Efficacy against Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2)","authors":"Y. Nishihara, Hideo Eguchi, Steve Zhou","doi":"10.5772/intechopen.100268","DOIUrl":"https://doi.org/10.5772/intechopen.100268","url":null,"abstract":"This chapter focuses on viral efficacy evaluations of silver ion (Ag+) formulations against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the virus associated with the COVID-19 pandemic and feline calicivirus (FCV), a surrogate for human norovirus. The chapter discusses the proposed mechanism of inactivation, with reference to some previously published articles. In addition, it discusses the background/current trend/future view of Ag+ products that have been used widely as surface/environment disinfectants in daily life all over the world. In efficacy studies performed by using the standardized ASTM E1052 methodology, it was found that Ag+ formulated with a low concentration (26% w/w) of ethanol displayed virucidal activity against SARS-CoV-2 and FeCV. These formulations might be useful for preventing the transmission of such viruses and limiting the outbreaks of emerging infectious diseases caused by coronaviruses and caliciviruses. To our knowledge, this is the first report describing the virucidal efficacy of an Ag+ formulation, evaluated by using the standardized ASTM E1052 methodology, for inactivating SARS-CoV-2. Some characteristics of Ag+-based virucides are discussed in this research report/minireview.","PeriodicalId":400860,"journal":{"name":"Disinfection of Viruses [Working Title]","volume":"36 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2021-10-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"127760882","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}