Imtiaz Ahmed Khan, L. Thekkekara, S. Waqar, N. Choudhry, S. John
{"title":"Supercapacitors Fabrication and Performance Evaluation Techniques","authors":"Imtiaz Ahmed Khan, L. Thekkekara, S. Waqar, N. Choudhry, S. John","doi":"10.5772/intechopen.101748","DOIUrl":"https://doi.org/10.5772/intechopen.101748","url":null,"abstract":"Supercapacitors have surfaced as a promising technology to store electrical energy and bridge the gap between a conventional capacitor and a battery. This chapter reviews various fabrication practices deployed in the development of supercapacitor electrodes and devices. A broader insight is given on the numerous electrode fabrication techniques that include a detailed introduction, principles, pros and cons, and their specific applications to provide a holistic view. Key performance parameters of an energy storage device are explained in detail. A further discussion comprises several electrochemical measurement procedures that are used for the supercapacitor performance evaluation. The performance characterization section helps to determine the correct approach that should be utilized for supercapacitor device performance measurement and assessment.","PeriodicalId":357102,"journal":{"name":"Supercapacitors [Working Title]","volume":"12 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2021-12-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"133696906","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Supercapacitor Supported by Nickel, Cobalt and Conducting Polymer Based Materials: Design Techniques and Current Advancement","authors":"S. Mardikar, Sagar D. Balgude, S. Uke","doi":"10.5772/intechopen.98355","DOIUrl":"https://doi.org/10.5772/intechopen.98355","url":null,"abstract":"The recent advanced electronic appliances demand special high power devices with lightweight, flexible, inexpensive, and environment friendly in nature. In addition, for many industrial and automotive applications, we need energy storage systems that can store energy in a short time and deliver an intense pulse of energy for long duration. Till date the Li-ion battery is the only choice for fulfilling all our energy storage demands. However, the high cost, limited availability and non-environmental nature of electrodes and electrolyte material of Li-ion battery limits its applicability. Hence, the world demands an alternative replacement for the Li-ion battery. In this regard, the supercapacitor is one of the most emerging and potential energy storage devices. The electrode plays an important role in supercapacitors. The nickel and cobalt based oxide, hydroxides, and their composites with conducting polymer are promising and highly appreciated electrode materials for supercapacitors. This chapter covers the recent advances in supercapacitors supported by nickel, cobalt and conducting polymer based materials and their applications predominantly described in the recent literature. Recent advances are reviewed including new methods of synthesis, nanostructuring, and self-assembly using surfactant and modifiers. This chapter also covered the applications of supercapacitors in powering the light weight, flexible and wearable electronics.","PeriodicalId":357102,"journal":{"name":"Supercapacitors [Working Title]","volume":"114 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2021-08-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"128157530","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Effect of Different Metals Doped in Nickel Oxide Nanomaterials on Electrochemical Capacitive Performance","authors":"A. Jadhav, S. L. Jadhav, A. V. Kadam","doi":"10.5772/intechopen.99326","DOIUrl":"https://doi.org/10.5772/intechopen.99326","url":null,"abstract":"Recently, the various porous nano metal oxides used for the electrochemical energy storage supercapacitor applications. Some researchers focus on the binary as well as ternary metal oxides and more metal oxide complex composite materials used for the supercapacitors. In the review article focused on the effect of different metals doped in a nickel oxide nano material on the electrochemical capacitive performance, discussion on methodologies, charge storage mechanism, latest research articles and prepared nanostructures. Nowadays nickel oxide is developing electrode material for storage of charge due to its higher thermal stability, excellent chemical stability, cost effective materials, higher theoretical values of specific capacitance, naturally rich and environment friendliness material. The various metals doped in NiO and their composite oxides have shown good structural stability, reversible capacity, long cycling stability and have been also studied nano structured electrode materials for electrochemical supercapacitor applications.","PeriodicalId":357102,"journal":{"name":"Supercapacitors [Working Title]","volume":"1 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2021-08-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"131297325","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Graphene Functionalization towards Developing Superior Supercapacitors Performance","authors":"A. Elhamid, H. Shawkey, A. Khalil, I. Azzouz","doi":"10.5772/intechopen.98354","DOIUrl":"https://doi.org/10.5772/intechopen.98354","url":null,"abstract":"Graphene is known as the miracle material of the 21st century for the wide band of participating applications and epic properties. Unlike the CVD monolayer graphene, Reduced graphene oxide (RGO) is a commercial form with mass production accessibility via numerous numbers of methods in preparation and reduction terms. Such RGO form showed exceptional combability in supercapacitors (SCs) where RGO is participated to promote flexibility, lifetime and performance. The chapter will illustrate 4 critical milestones of using graphene derivatives for achieving SC’s superior performance. The first is using oxidized graphene (GO) blind with polymer for super dielectric spacer. The other three types are dealing with electrolytic SCs based on RGO. Polyaniline (PANI) was grown on GO for exceptionally stable SCs of 100% retention. Silver decoration of RGO was used for all-solid-state printable device. The solid-state gel electrolyte was developed by adding GO to promote current rating. Finally, laser reduced graphene is presented as a one-step and versatile technique for micropatterning processing. The RGO reduction was demonstrated from a laser GO interaction perspective according to two selected key parameters; wavelength and pulse duration.","PeriodicalId":357102,"journal":{"name":"Supercapacitors [Working Title]","volume":"28 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2021-08-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"121799434","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Most Modern Supercapacitor Designs Advanced Electrolyte and Interface","authors":"Yachao Zhu, O. Fontaine","doi":"10.5772/intechopen.98352","DOIUrl":"https://doi.org/10.5772/intechopen.98352","url":null,"abstract":"Electrolyte plays a key and significant role in supercapacitors. The interaction of an electrode and a chosen electrolyte has a significant effect on the parameters., i.e., ionic conductivity, stable potential range, and charge transfer coefficient, therefore determining the corresponding performance. The captivating interface between electrode and electrolyte is also pushing the intensive research. In this chapter, we focus on two kinds of electrolytes, including water-in-salt electrolytes and redox-ionic liquid. Water-in-salt electrolyte is drawing continuous attention thanks to the formed hydrophobic layer on the positive electrode and solid electrolyte interphase (SEI) on the negative side, preventing water splitting. On the other side, redox-ionic liquid, taking advantage of the broad and stable working window, on the interface, the redox shuttle passes and targets the suitable electrode bulk, leading to redox reactions to highlight capacitance and energy.","PeriodicalId":357102,"journal":{"name":"Supercapacitors [Working Title]","volume":"1 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2021-06-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"131154361","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Two-Dimensional MXene Based Materials for Micro-Supercapacitors","authors":"Aditya Sharma, C. Rout","doi":"10.5772/INTECHOPEN.97650","DOIUrl":"https://doi.org/10.5772/INTECHOPEN.97650","url":null,"abstract":"With the boom in the development of micro-electronics for wearable and flexible electronics, there is a growing demand for micro-batteries and micro-supercapacitors (MSCs). Micro-supercapacitors have garnered a considerable attention for the evolution of these energy storage micro-systems. The choice of electrode material plays a pivotal role in the fabrication and development of MSCs. Recently, a new emerging family of two-dimensional transition metal (M) carbides or nitrides (X) cited as 2D MXene has emerged as a novel material. Due to its exceptionally high electronic conductivity ̴10,000 S cm−1, high charge storage capacity and easy processing capability helps to use MXene as the promising candidate for micro-supercapacitors electrodes. Taking the advantage of such exceptional properties. MXenes have been explored enormously in stacked as well as in interdigital architecture for on-chip micro-supercapacitors (MSCs). This book chapter includes a recent advancement of MXene based MSCs, with a brief overview of synthesis and fabrication techniques.","PeriodicalId":357102,"journal":{"name":"Supercapacitors [Working Title]","volume":"18 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2021-05-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"126727307","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Biomass Based Materials in Electrochemical Supercapacitor Applications","authors":"Sema Aslan, Derya Bal Altuntaş","doi":"10.5772/INTECHOPEN.98353","DOIUrl":"https://doi.org/10.5772/INTECHOPEN.98353","url":null,"abstract":"Biomass is the general term for organic substances derived from living organisms (plants and animals). Since, biomass is a renewable, sustainable, innovative, low cost and carbon-neutral energy source, the applications of nano-micro particles produced from biomass in electrochemical applications have emerged. A large number of carbon-based materials, such as featured activated carbon, carbon nanotube, C-dots, biochar, hybrid carbon-metal/metal oxide … etc. can be produced from divergent types of biomass. With the growing energy need in the world, supercapacitors have also developed considerably besides the energy generation and storage methods. The supercapacitor is an energy storage system that can work reversibly to provide high energy in a short time. In these systems, electrode structure and surface properties are crucial for energy capacity enhancement. In this sense, electrode modifications with the above-mentioned biomass-based nano-micro structures are widely used in supercapacitor applications.","PeriodicalId":357102,"journal":{"name":"Supercapacitors [Working Title]","volume":"6 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2021-05-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"128164870","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Graphene-Based Materials for Supercapacitor","authors":"A. J. Akhtar","doi":"10.5772/INTECHOPEN.98011","DOIUrl":"https://doi.org/10.5772/INTECHOPEN.98011","url":null,"abstract":"Graphene, a one-atomic-thick film of two-dimensional nanostructure, has piqued the attention of researchers due to its superior electrical conductivity, large surface area, good chemical stability, and excellent mechanical behaviour. These extraordinary properties make graphene an appropriate contender for energy storage applications. However, the agglomeration and re-stacking of graphene layers due to the enormous interlayer van der Waals attractions have severely hampered the performance of supercapacitors. Several strategies have been introduced to overcome the limitations and established graphene as an ideal candidate for supercapacitor. The combination of conducting polymer (CP) or metal oxide (MO) with graphene as electrode material is expected to boost the performance of supercapacitors. Recent reports on various CP/graphene composites and MO/graphene composites as supercapacitor electrode materials are summarised in this chapter, with a focus on the two basic supercapacitor mechanisms (EDLCs and pseudocapacitors).","PeriodicalId":357102,"journal":{"name":"Supercapacitors [Working Title]","volume":"11 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2021-05-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"128820969","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Antony Bazan-Aguilar, E. O. López, Miguel Ponce-Vargas, A. Baena-Moncada
{"title":"Biomass-Based Carbon Electrodes in the Design of Supercapacitors: An Electrochemical Point of View","authors":"Antony Bazan-Aguilar, E. O. López, Miguel Ponce-Vargas, A. Baena-Moncada","doi":"10.5772/INTECHOPEN.97649","DOIUrl":"https://doi.org/10.5772/INTECHOPEN.97649","url":null,"abstract":"The urgent demand of sustainable long-lasting batteries has fostered the improvement of extended-use technologies e.g., Li-ion batteries, as well as the development of alternative energy storage strategies like supercapacitors. In this context, new carbon-based materials were developed to attain higher electrochemical performances, even though several of these materials are not obtained by eco-friendly methods and/or in a considerable amount for practical purposes. However, up-to-date reports stand out the scopes achieved by biomass-based carbon materials as energy storage electrodes combining outstanding physicochemical and electrochemical properties with low-pollutant and low-cost production. On this basis, this chapter will expose several aspects of the synthesis of carbon-based electrodes from biomass, focusing on the influence of their surface properties: porosity, crystallinity, and morphology on their electrochemical performance in supercapacitors.","PeriodicalId":357102,"journal":{"name":"Supercapacitors [Working Title]","volume":"96 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2021-05-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"123763846","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}