{"title":"Priority Effects Determine How Dispersal Affects Biodiversity in Seasonal Metacommunities.","authors":"Heng-Xing Zou, Volker H W Rudolf","doi":"10.1086/725039","DOIUrl":null,"url":null,"abstract":"<p><p>AbstractThe arrival order of species frequently determines the outcome of their interactions. This phenomenon, called the priority effect, is ubiquitous in nature and determines local community structure, but we know surprisingly little about how it influences biodiversity across different spatial scales. Here, we use a seasonal metacommunity model to show that biodiversity patterns and the homogenizing effect of high dispersal depend on the specific mechanisms underlying priority effects. When priority effects are driven only by positive frequency dependence, dispersal-diversity relationships are sensitive to initial conditions but generally show a hump-shaped relationship: biodiversity declines when dispersal rates become high and allow the dominant competitor to exclude other species across patches. When spatiotemporal variation in phenological differences alters species' interaction strengths (trait-dependent priority effects), local, regional, and temporal diversity are surprisingly insensitive to variation in dispersal, regardless of the initial numeric advantage. Thus, trait-dependent priority effects can strongly reduce the effect of dispersal on biodiversity, preventing the homogenization of metacommunities. Our results suggest an alternative mechanism that maintains local and regional diversity without environmental heterogeneity, highlighting that accounting for the mechanisms underlying priority effects is fundamental to understanding patterns of biodiversity.</p>","PeriodicalId":50800,"journal":{"name":"American Naturalist","volume":"202 2","pages":"140-151"},"PeriodicalIF":2.4000,"publicationDate":"2023-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"American Naturalist","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1086/725039","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ECOLOGY","Score":null,"Total":0}
引用次数: 3
Abstract
AbstractThe arrival order of species frequently determines the outcome of their interactions. This phenomenon, called the priority effect, is ubiquitous in nature and determines local community structure, but we know surprisingly little about how it influences biodiversity across different spatial scales. Here, we use a seasonal metacommunity model to show that biodiversity patterns and the homogenizing effect of high dispersal depend on the specific mechanisms underlying priority effects. When priority effects are driven only by positive frequency dependence, dispersal-diversity relationships are sensitive to initial conditions but generally show a hump-shaped relationship: biodiversity declines when dispersal rates become high and allow the dominant competitor to exclude other species across patches. When spatiotemporal variation in phenological differences alters species' interaction strengths (trait-dependent priority effects), local, regional, and temporal diversity are surprisingly insensitive to variation in dispersal, regardless of the initial numeric advantage. Thus, trait-dependent priority effects can strongly reduce the effect of dispersal on biodiversity, preventing the homogenization of metacommunities. Our results suggest an alternative mechanism that maintains local and regional diversity without environmental heterogeneity, highlighting that accounting for the mechanisms underlying priority effects is fundamental to understanding patterns of biodiversity.
期刊介绍:
Since its inception in 1867, The American Naturalist has maintained its position as one of the world''s premier peer-reviewed publications in ecology, evolution, and behavior research. Its goals are to publish articles that are of broad interest to the readership, pose new and significant problems, introduce novel subjects, develop conceptual unification, and change the way people think. AmNat emphasizes sophisticated methodologies and innovative theoretical syntheses—all in an effort to advance the knowledge of organic evolution and other broad biological principles.