{"title":"Identifying Influential Nodes in Social Networks: Exploiting Self-Voting Mechanism.","authors":"Panfeng Liu, Longjie Li, Yanhong Wen, Shiyu Fang","doi":"10.1089/big.2022.0165","DOIUrl":null,"url":null,"abstract":"<p><p>The influence maximization (IM) problem is defined as identifying a group of influential nodes in a network such that these nodes can affect as many nodes as possible. Due to its great significance in viral marketing, disease control, social recommendation, and so on, considerable efforts have been devoted to the development of methods to solve the IM problem. In the literature, VoteRank and its improved algorithms have been proposed to select influential nodes based on voting approaches. However, in the voting process of these algorithms, a node cannot vote for itself. We argue that this voting schema runs counter to many real scenarios. To address this issue, we designed the VoteRank* algorithm, in which we first introduce the self-voting mechanism into the voting process. In addition, we also take into consideration the diversities of nodes. More explicitly, we measure the voting ability of nodes and the amount of a node voting for its neighbors based on the H-index of nodes. The effectiveness of the proposed algorithm is experimentally verified on 12 benchmark networks. The results demonstrate that VoteRank* is superior to the baseline methods in most cases.</p>","PeriodicalId":51314,"journal":{"name":"Big Data","volume":"11 4","pages":"296-306"},"PeriodicalIF":2.6000,"publicationDate":"2023-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Big Data","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1089/big.2022.0165","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/4/19 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0
Abstract
The influence maximization (IM) problem is defined as identifying a group of influential nodes in a network such that these nodes can affect as many nodes as possible. Due to its great significance in viral marketing, disease control, social recommendation, and so on, considerable efforts have been devoted to the development of methods to solve the IM problem. In the literature, VoteRank and its improved algorithms have been proposed to select influential nodes based on voting approaches. However, in the voting process of these algorithms, a node cannot vote for itself. We argue that this voting schema runs counter to many real scenarios. To address this issue, we designed the VoteRank* algorithm, in which we first introduce the self-voting mechanism into the voting process. In addition, we also take into consideration the diversities of nodes. More explicitly, we measure the voting ability of nodes and the amount of a node voting for its neighbors based on the H-index of nodes. The effectiveness of the proposed algorithm is experimentally verified on 12 benchmark networks. The results demonstrate that VoteRank* is superior to the baseline methods in most cases.
Big DataCOMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS-COMPUTER SCIENCE, THEORY & METHODS
CiteScore
9.10
自引率
2.20%
发文量
60
期刊介绍:
Big Data is the leading peer-reviewed journal covering the challenges and opportunities in collecting, analyzing, and disseminating vast amounts of data. The Journal addresses questions surrounding this powerful and growing field of data science and facilitates the efforts of researchers, business managers, analysts, developers, data scientists, physicists, statisticians, infrastructure developers, academics, and policymakers to improve operations, profitability, and communications within their businesses and institutions.
Spanning a broad array of disciplines focusing on novel big data technologies, policies, and innovations, the Journal brings together the community to address current challenges and enforce effective efforts to organize, store, disseminate, protect, manipulate, and, most importantly, find the most effective strategies to make this incredible amount of information work to benefit society, industry, academia, and government.
Big Data coverage includes:
Big data industry standards,
New technologies being developed specifically for big data,
Data acquisition, cleaning, distribution, and best practices,
Data protection, privacy, and policy,
Business interests from research to product,
The changing role of business intelligence,
Visualization and design principles of big data infrastructures,
Physical interfaces and robotics,
Social networking advantages for Facebook, Twitter, Amazon, Google, etc,
Opportunities around big data and how companies can harness it to their advantage.