Fillipe Mendes De Araújo, Annyta F Frota, Lívia B de Jesus, Lorena Cuenca-Bermejo, Kariny Maria S Ferreira, Cleonice Creusa Santos, Erica N Soares, Jéssica T Souza, Flávia S Sanches, Ana Carla S Costa, Alana A Farias, Maria de Fatima Dias Costa, Patrícia Munoz, José A Menezes-Filho, Juan Segura-Aguilar, Silvia Lima Costa, Maria Trinidad Herrero, Victor Diogenes Amaral Silva
{"title":"Protective Effects of Flavonoid Rutin Against Aminochrome Neurotoxicity.","authors":"Fillipe Mendes De Araújo, Annyta F Frota, Lívia B de Jesus, Lorena Cuenca-Bermejo, Kariny Maria S Ferreira, Cleonice Creusa Santos, Erica N Soares, Jéssica T Souza, Flávia S Sanches, Ana Carla S Costa, Alana A Farias, Maria de Fatima Dias Costa, Patrícia Munoz, José A Menezes-Filho, Juan Segura-Aguilar, Silvia Lima Costa, Maria Trinidad Herrero, Victor Diogenes Amaral Silva","doi":"10.1007/s12640-022-00616-1","DOIUrl":null,"url":null,"abstract":"<p><p>Causes of dopaminergic neuronal loss in Parkinson's disease (PD) are subject of investigation and the common use of models of acute neurodegeneration induced by neurotoxins 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP), 6-hydroxydopamine, and rotenone contributed to advances in the study of PD. However, the use of study models more similar to the pathophysiology of PD is required for advances in early diagnosis and translational pharmacology. Aminochrome (AMI), a compound derived from dopamine oxidation and a precursor of neuromelanin, is able to induce all the mechanisms associated with neurodegeneration. Previously, we showed AMI is cytotoxic in primary culture of mesencephalic cells (PCMC) and induces in vitro and in vivo neuroinflammation. On the other hand, the effect of rutin in central nervous system cells has revealed anti-inflammatory, antioxidative, and neuroprotective potential. However, there have been no data studies on the effect of rutin against aminochrome neurotoxicity. Here, we show that rutin prevents lysosomal dysfunction and aminochrome-induced cell death in SHSY-5Y cells, protects PCMC against aminochrome cytotoxicity, and prevents in vivo loss of dopaminergic neurons in substantia nigra pars compacta (SNPc), as well as microgliosis and astrogliosis. Additionally, we show that rutin decreases levels of interleukin-1β (IL-1β) mRNA and increases levels of glia-derived neurotrophic factor (GDNF) and nerve-derived neurotrophic factor (NGF) mRNA. We evidence for the first time the protective effect of rutin on PD aminochrome-induced models and suggest the potential role of the anti-inflammatory activity and upregulation of NGF and GDNF in the mechanism of rutin action against aminochrome neurotoxicity.</p>","PeriodicalId":19193,"journal":{"name":"Neurotoxicity Research","volume":"41 3","pages":"224-241"},"PeriodicalIF":2.9000,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neurotoxicity Research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s12640-022-00616-1","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 2
Abstract
Causes of dopaminergic neuronal loss in Parkinson's disease (PD) are subject of investigation and the common use of models of acute neurodegeneration induced by neurotoxins 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP), 6-hydroxydopamine, and rotenone contributed to advances in the study of PD. However, the use of study models more similar to the pathophysiology of PD is required for advances in early diagnosis and translational pharmacology. Aminochrome (AMI), a compound derived from dopamine oxidation and a precursor of neuromelanin, is able to induce all the mechanisms associated with neurodegeneration. Previously, we showed AMI is cytotoxic in primary culture of mesencephalic cells (PCMC) and induces in vitro and in vivo neuroinflammation. On the other hand, the effect of rutin in central nervous system cells has revealed anti-inflammatory, antioxidative, and neuroprotective potential. However, there have been no data studies on the effect of rutin against aminochrome neurotoxicity. Here, we show that rutin prevents lysosomal dysfunction and aminochrome-induced cell death in SHSY-5Y cells, protects PCMC against aminochrome cytotoxicity, and prevents in vivo loss of dopaminergic neurons in substantia nigra pars compacta (SNPc), as well as microgliosis and astrogliosis. Additionally, we show that rutin decreases levels of interleukin-1β (IL-1β) mRNA and increases levels of glia-derived neurotrophic factor (GDNF) and nerve-derived neurotrophic factor (NGF) mRNA. We evidence for the first time the protective effect of rutin on PD aminochrome-induced models and suggest the potential role of the anti-inflammatory activity and upregulation of NGF and GDNF in the mechanism of rutin action against aminochrome neurotoxicity.
期刊介绍:
Neurotoxicity Research is an international, interdisciplinary broad-based journal for reporting both basic and clinical research on classical neurotoxicity effects and mechanisms associated with neurodegeneration, necrosis, neuronal apoptosis, nerve regeneration, neurotrophin mechanisms, and topics related to these themes.
Published papers have focused on:
NEURODEGENERATION and INJURY
Neuropathologies
Neuronal apoptosis
Neuronal necrosis
Neural death processes (anatomical, histochemical, neurochemical)
Neurodegenerative Disorders
Neural Effects of Substances of Abuse
NERVE REGENERATION and RESPONSES TO INJURY
Neural Adaptations
Neurotrophin mechanisms and actions
NEURO(CYTO)TOXICITY PROCESSES and NEUROPROTECTION
Excitatory amino acids
Neurotoxins, endogenous and synthetic
Reactive oxygen (nitrogen) species
Neuroprotection by endogenous and exogenous agents
Papers on related themes are welcome.