Randolph S Marshall, David S Liebeskind, John Huston Iii, Lloyd J Edwards, George Howard, James F Meschia, Thomas G Brott, Brajesh K Lal, Donald Heck, Giuseppe Lanzino, Navdeep Sangha, Vikram S Kashyap, Clarissa D Morales, Dejania Cotton-Samuel, Andres M Rivera, Adam M Brickman, Ronald M Lazar
{"title":"Cortical Thinning in High-Grade Asymptomatic Carotid Stenosis.","authors":"Randolph S Marshall, David S Liebeskind, John Huston Iii, Lloyd J Edwards, George Howard, James F Meschia, Thomas G Brott, Brajesh K Lal, Donald Heck, Giuseppe Lanzino, Navdeep Sangha, Vikram S Kashyap, Clarissa D Morales, Dejania Cotton-Samuel, Andres M Rivera, Adam M Brickman, Ronald M Lazar","doi":"10.5853/jos.2022.02285","DOIUrl":null,"url":null,"abstract":"<p><strong>Background and purpose: </strong>High-grade carotid artery stenosis may alter hemodynamics in the ipsilateral hemisphere, but consequences of this effect are poorly understood. Cortical thinning is associated with cognitive impairment in dementia, head trauma, demyelination, and stroke. We hypothesized that hemodynamic impairment, as represented by a relative time-to-peak (TTP) delay on MRI in the hemisphere ipsilateral to the stenosis, would be associated with relative cortical thinning in that hemisphere.</p><p><strong>Methods: </strong>We used baseline MRI data from the NINDS-funded Carotid Revascularization and Medical Management for Asymptomatic Carotid Stenosis-Hemodynamics (CREST-H) study. Dynamic contrast susceptibility MR perfusion-weighted images were post-processed with quantitative perfusion maps using deconvolution of tissue and arterial signals. The protocol derived a hemispheric TTP delay, calculated by subtraction of voxel values in the hemisphere ipsilateral minus those contralateral to the stenosis.</p><p><strong>Results: </strong>Among 110 consecutive patients enrolled in CREST-H to date, 45 (41%) had TTP delay of at least 0.5 seconds and 9 (8.3%) subjects had TTP delay of at least 2.0 seconds, the maximum delay measured. For every 0.25-second increase in TTP delay above 0.5 seconds, there was a 0.006-mm (6 micron) increase in cortical thickness asymmetry. Across the range of hemodynamic impairment, TTP delay independently predicted relative cortical thinning on the side of stenosis, adjusting for age, sex, hypertension, hemisphere, smoking history, low-density lipoprotein cholesterol, and preexisting infarction (P=0.032).</p><p><strong>Conclusions: </strong>Our findings suggest that hemodynamic impairment from high-grade asymptomatic carotid stenosis may structurally alter the cortex supplied by the stenotic carotid artery.</p>","PeriodicalId":17135,"journal":{"name":"Journal of Stroke","volume":"25 1","pages":"92-100"},"PeriodicalIF":6.0000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/f1/7d/jos-2022-02285.PMC9911846.pdf","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Stroke","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.5853/jos.2022.02285","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CLINICAL NEUROLOGY","Score":null,"Total":0}
引用次数: 2
Abstract
Background and purpose: High-grade carotid artery stenosis may alter hemodynamics in the ipsilateral hemisphere, but consequences of this effect are poorly understood. Cortical thinning is associated with cognitive impairment in dementia, head trauma, demyelination, and stroke. We hypothesized that hemodynamic impairment, as represented by a relative time-to-peak (TTP) delay on MRI in the hemisphere ipsilateral to the stenosis, would be associated with relative cortical thinning in that hemisphere.
Methods: We used baseline MRI data from the NINDS-funded Carotid Revascularization and Medical Management for Asymptomatic Carotid Stenosis-Hemodynamics (CREST-H) study. Dynamic contrast susceptibility MR perfusion-weighted images were post-processed with quantitative perfusion maps using deconvolution of tissue and arterial signals. The protocol derived a hemispheric TTP delay, calculated by subtraction of voxel values in the hemisphere ipsilateral minus those contralateral to the stenosis.
Results: Among 110 consecutive patients enrolled in CREST-H to date, 45 (41%) had TTP delay of at least 0.5 seconds and 9 (8.3%) subjects had TTP delay of at least 2.0 seconds, the maximum delay measured. For every 0.25-second increase in TTP delay above 0.5 seconds, there was a 0.006-mm (6 micron) increase in cortical thickness asymmetry. Across the range of hemodynamic impairment, TTP delay independently predicted relative cortical thinning on the side of stenosis, adjusting for age, sex, hypertension, hemisphere, smoking history, low-density lipoprotein cholesterol, and preexisting infarction (P=0.032).
Conclusions: Our findings suggest that hemodynamic impairment from high-grade asymptomatic carotid stenosis may structurally alter the cortex supplied by the stenotic carotid artery.
Journal of StrokeCLINICAL NEUROLOGYPERIPHERAL VASCULAR DISE-PERIPHERAL VASCULAR DISEASE
CiteScore
11.00
自引率
3.70%
发文量
52
审稿时长
12 weeks
期刊介绍:
The Journal of Stroke (JoS) is a peer-reviewed publication that focuses on clinical and basic investigation of cerebral circulation and associated diseases in stroke-related fields. Its aim is to enhance patient management, education, clinical or experimental research, and professionalism. The journal covers various areas of stroke research, including pathophysiology, risk factors, symptomatology, imaging, treatment, and rehabilitation. Basic science research is included when it provides clinically relevant information. The JoS is particularly interested in studies that highlight characteristics of stroke in the Asian population, as they are underrepresented in the literature.
The JoS had an impact factor of 8.2 in 2022 and aims to provide high-quality research papers to readers while maintaining a strong reputation. It is published three times a year, on the last day of January, May, and September. The online version of the journal is considered the main version as it includes all available content. Supplementary issues are occasionally published.
The journal is indexed in various databases, including SCI(E), Pubmed, PubMed Central, Scopus, KoreaMed, Komci, Synapse, Science Central, Google Scholar, and DOI/Crossref. It is also the official journal of the Korean Stroke Society since 1999, with the abbreviated title J Stroke.