Problematic Cannabis Use Is Associated with Reduced Rectal Microbial Species Richness and Diversity Among a Pilot Sample of Young Sexual and Gender Minorities.
Ethan Morgan, Jennifer A Manuzak, Courtney Broedlow, Hannah Hudson, Richard D'Aquila, Adam W Carrico, Nichole R Klatt, Brian Mustanski
{"title":"Problematic Cannabis Use Is Associated with Reduced Rectal Microbial Species Richness and Diversity Among a Pilot Sample of Young Sexual and Gender Minorities.","authors":"Ethan Morgan, Jennifer A Manuzak, Courtney Broedlow, Hannah Hudson, Richard D'Aquila, Adam W Carrico, Nichole R Klatt, Brian Mustanski","doi":"10.1089/aid.2022.0143","DOIUrl":null,"url":null,"abstract":"<p><p>Compared to young heterosexual men, young sexual and gender minorities (YSGM) have elevated systemic inflammation and unique intestinal microbial profiles, influenced by HIV infection and substance use. However, links between cannabis use and microbial dysbiosis in this population have not been well described. In this pilot study, we aimed to characterize the complex interrelationships between cannabis use and microbial community structure in YSGM in relationship to HIV status. Cannabis use was assessed by self-administered Cannabis Use Disorder Identification Test (CUDIT) questionnaires and rectal microbial community alpha-diversity metrics were assessed via 16S ribosomal ribonucleic acid (rRNA) sequencing in a subset of YSGM (<i>n</i> = 42) in the RADAR cohort (aged 16-29) in Chicago. Multivariable regression models were used to assess the relationship between cannabis use and microbiome alpha-diversity metrics, adjusting for HIV status and other risk characteristics, including inflammation, which was evaluated by plasma levels of C-reactive protein (CRP). Problematic cannabis use, but not general use, was significantly inversely associated with microbial community richness (Adj. Beta = -8.13; 95% confidence interval [CI]: -15.68 to -0.59) and Shannon diversity (Adj. Beta = -0.04; 95% CI: -0.07 to 0.009). No significant association was observed between CUDIT score and community evenness, nor was any significant moderation observed by HIV status. We observed that problematic cannabis use was associated with reduced microbial community richness and Shannon diversity, adjusting for within population differences in inflammation and HIV status. Future research should aim to assess how cannabis use contributes to microbiome-related health factors among YSGM and if decreasing cannabis use can restore gut microbial community structure.</p>","PeriodicalId":7544,"journal":{"name":"AIDS research and human retroviruses","volume":" ","pages":"1-6"},"PeriodicalIF":1.5000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10790549/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"AIDS research and human retroviruses","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1089/aid.2022.0143","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/4/5 0:00:00","PubModel":"Epub","JCR":"Q4","JCRName":"IMMUNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Compared to young heterosexual men, young sexual and gender minorities (YSGM) have elevated systemic inflammation and unique intestinal microbial profiles, influenced by HIV infection and substance use. However, links between cannabis use and microbial dysbiosis in this population have not been well described. In this pilot study, we aimed to characterize the complex interrelationships between cannabis use and microbial community structure in YSGM in relationship to HIV status. Cannabis use was assessed by self-administered Cannabis Use Disorder Identification Test (CUDIT) questionnaires and rectal microbial community alpha-diversity metrics were assessed via 16S ribosomal ribonucleic acid (rRNA) sequencing in a subset of YSGM (n = 42) in the RADAR cohort (aged 16-29) in Chicago. Multivariable regression models were used to assess the relationship between cannabis use and microbiome alpha-diversity metrics, adjusting for HIV status and other risk characteristics, including inflammation, which was evaluated by plasma levels of C-reactive protein (CRP). Problematic cannabis use, but not general use, was significantly inversely associated with microbial community richness (Adj. Beta = -8.13; 95% confidence interval [CI]: -15.68 to -0.59) and Shannon diversity (Adj. Beta = -0.04; 95% CI: -0.07 to 0.009). No significant association was observed between CUDIT score and community evenness, nor was any significant moderation observed by HIV status. We observed that problematic cannabis use was associated with reduced microbial community richness and Shannon diversity, adjusting for within population differences in inflammation and HIV status. Future research should aim to assess how cannabis use contributes to microbiome-related health factors among YSGM and if decreasing cannabis use can restore gut microbial community structure.
期刊介绍:
AIDS Research and Human Retroviruses was the very first AIDS publication in the field over 30 years ago, and today it is still the critical resource advancing research in retroviruses, including AIDS. The Journal provides the broadest coverage from molecular biology to clinical studies and outcomes research, focusing on developments in prevention science, novel therapeutics, and immune-restorative approaches. Cutting-edge papers on the latest progress and research advances through clinical trials and examination of targeted antiretroviral agents lead to improvements in translational medicine for optimal treatment outcomes.
AIDS Research and Human Retroviruses coverage includes:
HIV cure research
HIV prevention science
- Vaccine research
- Systemic and Topical PreP
Molecular and cell biology of HIV and SIV
Developments in HIV pathogenesis and comorbidities
Molecular biology, immunology, and epidemiology of HTLV
Pharmacology of HIV therapy
Social and behavioral science
Rapid publication of emerging sequence information.