{"title":"Multi-task learning for toxic comment classification and rationale extraction.","authors":"Kiran Babu Nelatoori, Hima Bindu Kommanti","doi":"10.1007/s10844-022-00726-4","DOIUrl":null,"url":null,"abstract":"<p><p>Social media content moderation is the standard practice as on today to promote healthy discussion forums. Toxic span prediction is helpful for explaining the toxic comment classification labels, thus is an important step towards building automated moderation systems. The relation between toxic comment classification and toxic span prediction makes joint learning objective meaningful. We propose a multi-task learning model using ToxicXLMR for bidirectional contextual embeddings of input text for toxic comment classification, and a Bi-LSTM CRF layer for toxic span or rationale identification. To enable multi-task learning in this domain, we have curated a dataset from Jigsaw and Toxic span prediction datasets. The proposed model outperformed the single task models on the curated and toxic span prediction datasets with 4% and 2% improvement for classification and rationale identification, respectively. We investigated the domain adaptation ability of the proposed MTL model on HASOC and OLID datasets that contain the out of domain text from Twitter and found a 3% improvement in the F1 score over single task models.</p>","PeriodicalId":56119,"journal":{"name":"Journal of Intelligent Information Systems","volume":"60 2","pages":"495-519"},"PeriodicalIF":2.3000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9391651/pdf/","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Intelligent Information Systems","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s10844-022-00726-4","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 3
Abstract
Social media content moderation is the standard practice as on today to promote healthy discussion forums. Toxic span prediction is helpful for explaining the toxic comment classification labels, thus is an important step towards building automated moderation systems. The relation between toxic comment classification and toxic span prediction makes joint learning objective meaningful. We propose a multi-task learning model using ToxicXLMR for bidirectional contextual embeddings of input text for toxic comment classification, and a Bi-LSTM CRF layer for toxic span or rationale identification. To enable multi-task learning in this domain, we have curated a dataset from Jigsaw and Toxic span prediction datasets. The proposed model outperformed the single task models on the curated and toxic span prediction datasets with 4% and 2% improvement for classification and rationale identification, respectively. We investigated the domain adaptation ability of the proposed MTL model on HASOC and OLID datasets that contain the out of domain text from Twitter and found a 3% improvement in the F1 score over single task models.
期刊介绍:
The mission of the Journal of Intelligent Information Systems: Integrating Artifical Intelligence and Database Technologies is to foster and present research and development results focused on the integration of artificial intelligence and database technologies to create next generation information systems - Intelligent Information Systems.
These new information systems embody knowledge that allows them to exhibit intelligent behavior, cooperate with users and other systems in problem solving, discovery, access, retrieval and manipulation of a wide variety of multimedia data and knowledge, and reason under uncertainty. Increasingly, knowledge-directed inference processes are being used to:
discover knowledge from large data collections,
provide cooperative support to users in complex query formulation and refinement,
access, retrieve, store and manage large collections of multimedia data and knowledge,
integrate information from multiple heterogeneous data and knowledge sources, and
reason about information under uncertain conditions.
Multimedia and hypermedia information systems now operate on a global scale over the Internet, and new tools and techniques are needed to manage these dynamic and evolving information spaces.
The Journal of Intelligent Information Systems provides a forum wherein academics, researchers and practitioners may publish high-quality, original and state-of-the-art papers describing theoretical aspects, systems architectures, analysis and design tools and techniques, and implementation experiences in intelligent information systems. The categories of papers published by JIIS include: research papers, invited papters, meetings, workshop and conference annoucements and reports, survey and tutorial articles, and book reviews. Short articles describing open problems or their solutions are also welcome.