Germán Braun, Pablo Rubén Fillottrani, C Maria Keet
{"title":"A framework for interoperability between models with hybrid tools.","authors":"Germán Braun, Pablo Rubén Fillottrani, C Maria Keet","doi":"10.1007/s10844-022-00731-7","DOIUrl":null,"url":null,"abstract":"<p><p>Complex system development and maintenance face the challenge of dealing with different types of models due to language affordances, preferences, sizes, and so forth that involve interaction between users with different levels of proficiency. Current conceptual data modelling tools do not fully support these modes of working. It requires that the interaction between multiple models in multiple languages is clearly specified to ensure they keep their intended semantics, which is lacking in extant tools. The key objective is to devise a mechanism to support semantic interoperability in hybrid tools for multi-modal modelling in a plurality of paradigms, all within one system. We propose FaCIL, a framework for such hybrid modelling tools. We design and realise the framework FaCIL, which maps UML, ER and ORM2 into a common metamodel with rules that provide the central point for management among the models and that links to the formalisation and logic-based automated reasoning. FaCIL supports the ability to represent models in different formats while preserving their semantics, and several editing workflows are supported within the framework. It has a clear separation of concerns for typical conceptual modelling activities in an interoperable and extensible way. FaCIL structures and facilitates the interaction between visual and textual conceptual models, their formal specifications, and abstractions as well as tracking and propagating updates across all the representations. FaCIL is compared against the requirements, implemented in crowd 2.0, and assessed with a use case. The proof-of-concept implementation in the web-based modelling tool crowd 2.0 demonstrates its viability. The framework also meets the requirements and fully supports the use case.</p>","PeriodicalId":56119,"journal":{"name":"Journal of Intelligent Information Systems","volume":"60 2","pages":"437-462"},"PeriodicalIF":2.3000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9334976/pdf/","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Intelligent Information Systems","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s10844-022-00731-7","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 1
Abstract
Complex system development and maintenance face the challenge of dealing with different types of models due to language affordances, preferences, sizes, and so forth that involve interaction between users with different levels of proficiency. Current conceptual data modelling tools do not fully support these modes of working. It requires that the interaction between multiple models in multiple languages is clearly specified to ensure they keep their intended semantics, which is lacking in extant tools. The key objective is to devise a mechanism to support semantic interoperability in hybrid tools for multi-modal modelling in a plurality of paradigms, all within one system. We propose FaCIL, a framework for such hybrid modelling tools. We design and realise the framework FaCIL, which maps UML, ER and ORM2 into a common metamodel with rules that provide the central point for management among the models and that links to the formalisation and logic-based automated reasoning. FaCIL supports the ability to represent models in different formats while preserving their semantics, and several editing workflows are supported within the framework. It has a clear separation of concerns for typical conceptual modelling activities in an interoperable and extensible way. FaCIL structures and facilitates the interaction between visual and textual conceptual models, their formal specifications, and abstractions as well as tracking and propagating updates across all the representations. FaCIL is compared against the requirements, implemented in crowd 2.0, and assessed with a use case. The proof-of-concept implementation in the web-based modelling tool crowd 2.0 demonstrates its viability. The framework also meets the requirements and fully supports the use case.
期刊介绍:
The mission of the Journal of Intelligent Information Systems: Integrating Artifical Intelligence and Database Technologies is to foster and present research and development results focused on the integration of artificial intelligence and database technologies to create next generation information systems - Intelligent Information Systems.
These new information systems embody knowledge that allows them to exhibit intelligent behavior, cooperate with users and other systems in problem solving, discovery, access, retrieval and manipulation of a wide variety of multimedia data and knowledge, and reason under uncertainty. Increasingly, knowledge-directed inference processes are being used to:
discover knowledge from large data collections,
provide cooperative support to users in complex query formulation and refinement,
access, retrieve, store and manage large collections of multimedia data and knowledge,
integrate information from multiple heterogeneous data and knowledge sources, and
reason about information under uncertain conditions.
Multimedia and hypermedia information systems now operate on a global scale over the Internet, and new tools and techniques are needed to manage these dynamic and evolving information spaces.
The Journal of Intelligent Information Systems provides a forum wherein academics, researchers and practitioners may publish high-quality, original and state-of-the-art papers describing theoretical aspects, systems architectures, analysis and design tools and techniques, and implementation experiences in intelligent information systems. The categories of papers published by JIIS include: research papers, invited papters, meetings, workshop and conference annoucements and reports, survey and tutorial articles, and book reviews. Short articles describing open problems or their solutions are also welcome.