{"title":"Generalized durative event detection on social media.","authors":"Yihong Zhang, Masumi Shirakawa, Takahiro Hara","doi":"10.1007/s10844-022-00730-8","DOIUrl":null,"url":null,"abstract":"<p><p>Given the recent availability of large volumes of social media discussions, finding temporal unusual phenomena, which can be called events, from such data is of great interest. Previous works on social media event detection either assume a specific type of event, or assume certain behavior of observed variables. In this paper, we propose a general method for event detection on social media that makes few assumptions. The main assumption we make is that when an event occurs, affected semantic aspects will behave differently from their usual behavior, for a sustained period. We generalize the representation of time units based on word embeddings of social media text, and propose an algorithm to detect durative events in time series in a general sense. In addition, we also provide an incremental version of the algorithm for the purpose of real-time detection. We test our approaches on synthetic data and two real-world tasks. With the synthetic dataset, we compare the performance of retrospective and incremental versions of the algorithm. In the first real-world task, we use a novel setting to test if our method and baseline methods can exhaustively catch all real-world news in the test period. The evaluation results show that when the event is quite unusual with regard to the base social media discussion, it can be captured more effectively with our method. In the second real-world task, we use the event captured to help improve the accuracy of stock market movement prediction. We show that our event-based approach has a clear advantage compared to other ways of adding social media information.</p>","PeriodicalId":56119,"journal":{"name":"Journal of Intelligent Information Systems","volume":"60 1","pages":"73-95"},"PeriodicalIF":2.3000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9927034/pdf/","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Intelligent Information Systems","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s10844-022-00730-8","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 1
Abstract
Given the recent availability of large volumes of social media discussions, finding temporal unusual phenomena, which can be called events, from such data is of great interest. Previous works on social media event detection either assume a specific type of event, or assume certain behavior of observed variables. In this paper, we propose a general method for event detection on social media that makes few assumptions. The main assumption we make is that when an event occurs, affected semantic aspects will behave differently from their usual behavior, for a sustained period. We generalize the representation of time units based on word embeddings of social media text, and propose an algorithm to detect durative events in time series in a general sense. In addition, we also provide an incremental version of the algorithm for the purpose of real-time detection. We test our approaches on synthetic data and two real-world tasks. With the synthetic dataset, we compare the performance of retrospective and incremental versions of the algorithm. In the first real-world task, we use a novel setting to test if our method and baseline methods can exhaustively catch all real-world news in the test period. The evaluation results show that when the event is quite unusual with regard to the base social media discussion, it can be captured more effectively with our method. In the second real-world task, we use the event captured to help improve the accuracy of stock market movement prediction. We show that our event-based approach has a clear advantage compared to other ways of adding social media information.
期刊介绍:
The mission of the Journal of Intelligent Information Systems: Integrating Artifical Intelligence and Database Technologies is to foster and present research and development results focused on the integration of artificial intelligence and database technologies to create next generation information systems - Intelligent Information Systems.
These new information systems embody knowledge that allows them to exhibit intelligent behavior, cooperate with users and other systems in problem solving, discovery, access, retrieval and manipulation of a wide variety of multimedia data and knowledge, and reason under uncertainty. Increasingly, knowledge-directed inference processes are being used to:
discover knowledge from large data collections,
provide cooperative support to users in complex query formulation and refinement,
access, retrieve, store and manage large collections of multimedia data and knowledge,
integrate information from multiple heterogeneous data and knowledge sources, and
reason about information under uncertain conditions.
Multimedia and hypermedia information systems now operate on a global scale over the Internet, and new tools and techniques are needed to manage these dynamic and evolving information spaces.
The Journal of Intelligent Information Systems provides a forum wherein academics, researchers and practitioners may publish high-quality, original and state-of-the-art papers describing theoretical aspects, systems architectures, analysis and design tools and techniques, and implementation experiences in intelligent information systems. The categories of papers published by JIIS include: research papers, invited papters, meetings, workshop and conference annoucements and reports, survey and tutorial articles, and book reviews. Short articles describing open problems or their solutions are also welcome.