Effects of molybdenum on hot deformation behavior and microstructural evolution of Fe40Mn40Co10Cr10C0.5 high entropy alloys.

IF 7.4 3区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY
Marzieh Ebrahimian, Mohsen Saboktakin Rizi, Sun Ig Hong, Jeoung Han Kim
{"title":"Effects of molybdenum on hot deformation behavior and microstructural evolution of Fe<sub>40</sub>Mn<sub>40</sub>Co<sub>10</sub>Cr<sub>10</sub>C<sub>0.5</sub> high entropy alloys.","authors":"Marzieh Ebrahimian,&nbsp;Mohsen Saboktakin Rizi,&nbsp;Sun Ig Hong,&nbsp;Jeoung Han Kim","doi":"10.1080/14686996.2023.2186119","DOIUrl":null,"url":null,"abstract":"<p><p>The remarkable properties of high-entropy alloys (HEAs) have resulted in their increased research interest and prompted the use of various strategies to enhance their mechanical properties. In this study, the effects of Mo on the hot compressive deformation behavior of carbon-containing FeMn<sub>40</sub>Co<sub>10</sub>Cr<sub>10</sub> HEAs in the temperature range of 800-1000°C and strain rate of 0.001-0.1 s<sup>-1</sup> was investigated. The microstructural evolutilon and phase structure were characterized by X-ray diffraction and electron backscattered diffraction. The effects of strain, strain rate, and deformation temperature on the thermally activated deformation restoration process of the Fe<sub>39.5</sub>Mn<sub>40</sub>Co<sub>10</sub>Cr<sub>10</sub>C<sub>0.5</sub> and Fe<sub>38.3</sub>Mn<sub>40</sub>Co<sub>10</sub>Cr<sub>10</sub>C<sub>0.5</sub>Mo<sub>1.7</sub> HEAs during hot compression were represented by the Zener-Hollomon parameter. Dynamic recrystallization was initiated at 800°C with the strain rate of 0.001-0.1 s<sup>-1</sup>. The precipitation of the M<sub>23</sub>C<sub>6</sub> carbide along the grain boundaries and within the matrix exerted a strong pinning effect on the grain/subgrain boundaries and promoted dynamic recrystallization through the particle-stimulated nucleation of recrystallization. Moreover, the addition of Mo to the Fe<sub>39.5</sub>Mn<sub>40</sub>Co<sub>10</sub>Cr<sub>10</sub>C<sub>0.5</sub> HEA changed the dynamic recrystallization mechanism by reducing the stacking fault energy and enhancing the reverse <math> <mrow><mrow><mi>f</mi> <mi>c</mi> <mi>c</mi></mrow> </mrow> <mo>↔</mo> <mrow><mrow><mi>h</mi> <mi>c</mi> <mi>p</mi></mrow> </mrow> </math> phase transformation. The heterogeneous microstructure composed of ultrafine, fine, and larger grains in the Fe<sub>38.3</sub>Mn<sub>40</sub>Co<sub>10</sub>Cr<sub>10</sub>C<sub>0.5</sub>Mo<sub>1.7</sub> HEA could be obtained by the nucleation of new recrystallized grains at large deformed grain boundaries adjacent to the first necklace structures and shear bands.</p>","PeriodicalId":21588,"journal":{"name":"Science and Technology of Advanced Materials","volume":"24 1","pages":"2186119"},"PeriodicalIF":7.4000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/7f/1a/TSTA_24_2186119.PMC10026765.pdf","citationCount":"12","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science and Technology of Advanced Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1080/14686996.2023.2186119","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 12

Abstract

The remarkable properties of high-entropy alloys (HEAs) have resulted in their increased research interest and prompted the use of various strategies to enhance their mechanical properties. In this study, the effects of Mo on the hot compressive deformation behavior of carbon-containing FeMn40Co10Cr10 HEAs in the temperature range of 800-1000°C and strain rate of 0.001-0.1 s-1 was investigated. The microstructural evolutilon and phase structure were characterized by X-ray diffraction and electron backscattered diffraction. The effects of strain, strain rate, and deformation temperature on the thermally activated deformation restoration process of the Fe39.5Mn40Co10Cr10C0.5 and Fe38.3Mn40Co10Cr10C0.5Mo1.7 HEAs during hot compression were represented by the Zener-Hollomon parameter. Dynamic recrystallization was initiated at 800°C with the strain rate of 0.001-0.1 s-1. The precipitation of the M23C6 carbide along the grain boundaries and within the matrix exerted a strong pinning effect on the grain/subgrain boundaries and promoted dynamic recrystallization through the particle-stimulated nucleation of recrystallization. Moreover, the addition of Mo to the Fe39.5Mn40Co10Cr10C0.5 HEA changed the dynamic recrystallization mechanism by reducing the stacking fault energy and enhancing the reverse f c c h c p phase transformation. The heterogeneous microstructure composed of ultrafine, fine, and larger grains in the Fe38.3Mn40Co10Cr10C0.5Mo1.7 HEA could be obtained by the nucleation of new recrystallized grains at large deformed grain boundaries adjacent to the first necklace structures and shear bands.

Abstract Image

Abstract Image

Abstract Image

钼对Fe40Mn40Co10Cr10C0.5高熵合金热变形行为及组织演变的影响
高熵合金(HEAs)的优异性能引起了人们越来越多的研究兴趣,并促使人们采用各种策略来提高其力学性能。本文研究了Mo对含碳FeMn40Co10Cr10 HEAs在800 ~ 1000℃、应变速率0.001 ~ 0.1 s-1范围内热压缩变形行为的影响。用x射线衍射和电子背散射衍射对材料的显微组织演化和相结构进行了表征。应变、应变速率和变形温度对Fe39.5Mn40Co10Cr10C0.5和Fe38.3Mn40Co10Cr10C0.5Mo1.7 HEAs热压缩过程热激活变形恢复过程的影响用Zener-Hollomon参数表示。在800℃下,应变速率为0.001 ~ 0.1 s-1,开始动态再结晶。M23C6碳化物沿晶界和基体内部的析出对晶界/亚晶界产生了强烈的钉住作用,并通过颗粒激发的再结晶成核促进了动态再结晶。此外,在Fe39.5Mn40Co10Cr10C0.5 HEA中加入Mo可以降低层错能,增强c c↔h c p相变的反向,从而改变了动态再结晶机制。Fe38.3Mn40Co10Cr10C0.5Mo1.7 HEA中由超细晶粒、细晶粒和较大晶粒组成的非均质显微组织可以通过在靠近第一项链组织和剪切带的大变形晶界处形成新的再结晶晶粒形核而获得。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Science and Technology of Advanced Materials
Science and Technology of Advanced Materials 工程技术-材料科学:综合
CiteScore
10.60
自引率
3.60%
发文量
52
审稿时长
4.8 months
期刊介绍: Science and Technology of Advanced Materials (STAM) is a leading open access, international journal for outstanding research articles across all aspects of materials science. Our audience is the international community across the disciplines of materials science, physics, chemistry, biology as well as engineering. The journal covers a broad spectrum of topics including functional and structural materials, synthesis and processing, theoretical analyses, characterization and properties of materials. Emphasis is placed on the interdisciplinary nature of materials science and issues at the forefront of the field, such as energy and environmental issues, as well as medical and bioengineering applications. Of particular interest are research papers on the following topics: Materials informatics and materials genomics Materials for 3D printing and additive manufacturing Nanostructured/nanoscale materials and nanodevices Bio-inspired, biomedical, and biological materials; nanomedicine, and novel technologies for clinical and medical applications Materials for energy and environment, next-generation photovoltaics, and green technologies Advanced structural materials, materials for extreme conditions.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信