Audio-visual speech recognition using depth information from the Kinect in noisy video conditions

Georgios Galatas, G. Potamianos, F. Makedon
{"title":"Audio-visual speech recognition using depth information from the Kinect in noisy video conditions","authors":"Georgios Galatas, G. Potamianos, F. Makedon","doi":"10.1145/2413097.2413100","DOIUrl":null,"url":null,"abstract":"In this paper we build on our recent work, where we successfully incorporated facial depth data of a speaker captured by the Microsoft Kinect device, as a third data stream in an audio-visual automatic speech recognizer. In particular, we focus our interest on whether the depth stream provides sufficient speech information that can improve system robustness to noisy audio-visual conditions, thus studying system operation beyond the traditional scenarios, where noise is applied to the audio signal alone. For this purpose, we consider four realistic visual modality degradations at various noise levels, and we conduct small-vocabulary recognition experiments on an appropriate, previously collected, audiovisual database. Our results demonstrate improved system performance due to the depth modality, as well as considerable accuracy increase, when using both the visual and depth modalities over audio only speech recognition.","PeriodicalId":91811,"journal":{"name":"The ... International Conference on PErvasive Technologies Related to Assistive Environments : PETRA ... International Conference on PErvasive Technologies Related to Assistive Environments","volume":"16 1","pages":"2"},"PeriodicalIF":0.0000,"publicationDate":"2012-06-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"15","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The ... International Conference on PErvasive Technologies Related to Assistive Environments : PETRA ... International Conference on PErvasive Technologies Related to Assistive Environments","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2413097.2413100","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 15

Abstract

In this paper we build on our recent work, where we successfully incorporated facial depth data of a speaker captured by the Microsoft Kinect device, as a third data stream in an audio-visual automatic speech recognizer. In particular, we focus our interest on whether the depth stream provides sufficient speech information that can improve system robustness to noisy audio-visual conditions, thus studying system operation beyond the traditional scenarios, where noise is applied to the audio signal alone. For this purpose, we consider four realistic visual modality degradations at various noise levels, and we conduct small-vocabulary recognition experiments on an appropriate, previously collected, audiovisual database. Our results demonstrate improved system performance due to the depth modality, as well as considerable accuracy increase, when using both the visual and depth modalities over audio only speech recognition.
在嘈杂的视频条件下,使用Kinect深度信息的视听语音识别
在本文中,我们以最近的工作为基础,成功地将微软Kinect设备捕获的说话者的面部深度数据作为视听自动语音识别器的第三个数据流。特别是,我们关注深度流是否提供足够的语音信息,以提高系统对噪声视听条件的鲁棒性,从而研究超出传统场景的系统运行,其中噪声仅应用于音频信号。为此,我们考虑了不同噪声水平下的四种现实视觉模态退化,并在适当的、先前收集的视听数据库上进行了小词汇识别实验。我们的研究结果表明,当使用视觉和深度模态而不是音频语音识别时,由于深度模态,系统性能得到了改善,准确性也有了相当大的提高。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信