Boundedness Estimates for Commutators of Riesz Transforms Related to Schrödinger Operators

IF 0.4 Q4 MATHEMATICS
Y. He
{"title":"Boundedness Estimates for Commutators of Riesz Transforms Related to Schrödinger Operators","authors":"Y. He","doi":"10.4208/ATA.OA-2017-0071","DOIUrl":null,"url":null,"abstract":"Let L=−∆+V be a Schrödinger operator on Rn(n≥ 3), where the nonnegative potential V belongs to reverse Hölder class RHq1 for q1 > n 2 . Let H p L(R n) be the Hardy space associated with L. In this paper, we consider the commutator [b,Tα], which associated with the Riesz transform Tα =Vα(−∆+V)−α with 0< α≤ 1, and a locally integrable function b belongs to the new Campanato space Λβ(ρ). We establish the boundedness of [b,Tα] from Lp(Rn) to Lq(Rn) for 1 < p < q1/α with 1/q= 1/p−β/n. We also show that [b,Tα] is bounded from H L(R n) to Lq(Rn) when n/(n+β)< p≤ 1,1/q = 1/p−β/n. Moreover, we prove that [b,Tα] maps H n n+β L (R n) continuously into weak L1(Rn).","PeriodicalId":29763,"journal":{"name":"Analysis in Theory and Applications","volume":"23 1","pages":""},"PeriodicalIF":0.4000,"publicationDate":"2018-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Analysis in Theory and Applications","FirstCategoryId":"95","ListUrlMain":"https://doi.org/10.4208/ATA.OA-2017-0071","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

Let L=−∆+V be a Schrödinger operator on Rn(n≥ 3), where the nonnegative potential V belongs to reverse Hölder class RHq1 for q1 > n 2 . Let H p L(R n) be the Hardy space associated with L. In this paper, we consider the commutator [b,Tα], which associated with the Riesz transform Tα =Vα(−∆+V)−α with 0< α≤ 1, and a locally integrable function b belongs to the new Campanato space Λβ(ρ). We establish the boundedness of [b,Tα] from Lp(Rn) to Lq(Rn) for 1 < p < q1/α with 1/q= 1/p−β/n. We also show that [b,Tα] is bounded from H L(R n) to Lq(Rn) when n/(n+β)< p≤ 1,1/q = 1/p−β/n. Moreover, we prove that [b,Tα] maps H n n+β L (R n) continuously into weak L1(Rn).
与Schrödinger算子相关的Riesz变换换向子的有界性估计
设L=−∆+V为Rn(n≥3)上的Schrödinger算子,其中非负电位V在q1 > n2时属于反向Hölder类RHq1。本文考虑与Riesz变换Tα =Vα(−∆+V)−α相关联的对易子[b,Tα],其0< α≤1,局部可积函数b属于新的Campanato空间Λβ(ρ)。我们建立了当1 < p < q1/α,且1/q= 1/p−β/n时,[b, t - α]从Lp(Rn)到Lq(Rn)的有界性。当n/(n+β)< p≤1,1/q = 1/p - β/n时,[b, t - α]从hl (Rn)到Lq(Rn)有界。此外,我们还证明了[b,Tα]连续映射H n n+β L (Rn)到弱L1(Rn)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
747
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信