An Improved XGBoost Indoor Localization Algorithm

Wei Qiao, Xiaofei Kang, Mengmeng Li
{"title":"An Improved XGBoost Indoor Localization Algorithm","authors":"Wei Qiao, Xiaofei Kang, Mengmeng Li","doi":"10.12783/dtcse/cisnr2020/35144","DOIUrl":null,"url":null,"abstract":"This paper proposes an improved XGBoost Wi-Fi indoor positioning algorithm aiming at the accuracy problem caused by the change of environment.The method first uses Extreme Gradient Boosting (XGBoost) algorithm to establish indoor positioning model, which can achieve indoor positioning. When the environment changes, further combine error compensation (EC) method to improve the initial positioning. In addition, the positioning trajectory is compared with the actual trajectory and the unimproved positioning trajectory to verify the stability of the algorithm. The experimental results show that the 80-th percentile of the achieved accuracy is 1.11m after the change of environment, which is significantly better than the unimproved positioning algorithms based on support vector machine, random forest and extreme gradient promotion, and the obtained positioning trajectory tends to converge with the actual trajectory.","PeriodicalId":11066,"journal":{"name":"DEStech Transactions on Computer Science and Engineering","volume":"19 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-12-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"DEStech Transactions on Computer Science and Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.12783/dtcse/cisnr2020/35144","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

This paper proposes an improved XGBoost Wi-Fi indoor positioning algorithm aiming at the accuracy problem caused by the change of environment.The method first uses Extreme Gradient Boosting (XGBoost) algorithm to establish indoor positioning model, which can achieve indoor positioning. When the environment changes, further combine error compensation (EC) method to improve the initial positioning. In addition, the positioning trajectory is compared with the actual trajectory and the unimproved positioning trajectory to verify the stability of the algorithm. The experimental results show that the 80-th percentile of the achieved accuracy is 1.11m after the change of environment, which is significantly better than the unimproved positioning algorithms based on support vector machine, random forest and extreme gradient promotion, and the obtained positioning trajectory tends to converge with the actual trajectory.
一种改进的XGBoost室内定位算法
本文针对环境变化带来的精度问题,提出了一种改进的XGBoost Wi-Fi室内定位算法。该方法首先利用极限梯度增强(XGBoost)算法建立室内定位模型,实现室内定位;当环境发生变化时,进一步结合误差补偿(EC)方法提高初始定位精度。此外,将定位轨迹与实际轨迹和未改进的定位轨迹进行比较,验证算法的稳定性。实验结果表明,在环境变化后,所获得的第80百分位精度为1.11m,明显优于未改进的基于支持向量机、随机森林和极值梯度提升的定位算法,并且所获得的定位轨迹趋于与实际轨迹收敛。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信