A stabilized semi-Lagrangian finite element method for natural convection in Darcy flows

IF 0.9 Q3 MATHEMATICS, APPLIED
Loubna Salhi, Mofdi El-Amrani, Mohammed Seaid
{"title":"A stabilized semi-Lagrangian finite element method for natural convection in Darcy flows","authors":"Loubna Salhi,&nbsp;Mofdi El-Amrani,&nbsp;Mohammed Seaid","doi":"10.1002/cmm4.1140","DOIUrl":null,"url":null,"abstract":"<p>We present an accurate semi-Lagrangian finite element method for the numerical solution of groundwater flow problems in porous media with natural convection. The mathematical model consists of the Darcy problem for the flow velocity and pressure subject to the Boussinesq approximation of low density variations coupled to a convection–diffusion equation for the concentration. The main idea is to combine the semi-Lagrangian method for time integration with finite element method for space discretization, so that the standard Courant–Friedrichs–Lewy condition is relaxed and the time truncation errors are reduced in the diffusion part of the governing equations. We also use a local <i>L</i><sup>2</sup>-projection stabilization technique in order to improve the accuracy of the presented method. Numerical simulations are carried out for a test example of a natural convection in an aquifer system with natural boundaries. The obtained results demonstrate the ability of the proposed semi-Lagrangian finite element method to offer efficient and accurate simulations for natural convection in Darcy flows.</p>","PeriodicalId":100308,"journal":{"name":"Computational and Mathematical Methods","volume":"3 6","pages":""},"PeriodicalIF":0.9000,"publicationDate":"2020-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1002/cmm4.1140","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational and Mathematical Methods","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/cmm4.1140","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 3

Abstract

We present an accurate semi-Lagrangian finite element method for the numerical solution of groundwater flow problems in porous media with natural convection. The mathematical model consists of the Darcy problem for the flow velocity and pressure subject to the Boussinesq approximation of low density variations coupled to a convection–diffusion equation for the concentration. The main idea is to combine the semi-Lagrangian method for time integration with finite element method for space discretization, so that the standard Courant–Friedrichs–Lewy condition is relaxed and the time truncation errors are reduced in the diffusion part of the governing equations. We also use a local L2-projection stabilization technique in order to improve the accuracy of the presented method. Numerical simulations are carried out for a test example of a natural convection in an aquifer system with natural boundaries. The obtained results demonstrate the ability of the proposed semi-Lagrangian finite element method to offer efficient and accurate simulations for natural convection in Darcy flows.

达西流动中自然对流的稳定半拉格朗日有限元法
本文提出了一种精确的半拉格朗日有限元法,用于自然对流多孔介质中地下水流动问题的数值求解。该数学模型由低密度变化的Boussinesq近似下的流速和压力达西问题和浓度的对流扩散方程组成。其主要思想是将时间积分的半拉格朗日方法与空间离散的有限元方法相结合,从而放宽了标准Courant-Friedrichs-Lewy条件,减小了控制方程扩散部分的时间截断误差。为了提高方法的精度,我们还使用了局部l2投影稳定技术。对具有自然边界的含水层系统中的自然对流进行了数值模拟。结果表明,本文提出的半拉格朗日有限元方法能够有效、准确地模拟达西流动中的自然对流。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.20
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信