Research and Implementation of EM Clustering Algorithm Based on Latent Variable Mining

Qiang Yue, Zhong-yu Hu, Dongping Li
{"title":"Research and Implementation of EM Clustering Algorithm Based on Latent Variable Mining","authors":"Qiang Yue, Zhong-yu Hu, Dongping Li","doi":"10.12783/DTCSE/CCNT2020/35417","DOIUrl":null,"url":null,"abstract":"Clustering analysis is one of the hot research fields in data mining. EM algorithm is an effective method to realize maximum likelihood estimation, which is mainly used for parameter estimation of incomplete data. It greatly simplifies the likelihood function equation by assuming the existence of latent variable, while maximum likelihood estimation is a commonly used parameter estimation method, and the EM algorithm makes its application more extensive. This paper takes clustering algorithm as the main research object, introduces the basic idea of maximum likelihood estimation, describes the basic theory of EM algorithm, and realizes EM algorithm. The experimental results show that compared with the traditional clustering algorithm, the EM algorithm has better convergence and clustering ability.","PeriodicalId":11066,"journal":{"name":"DEStech Transactions on Computer Science and Engineering","volume":"30 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-03-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"DEStech Transactions on Computer Science and Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.12783/DTCSE/CCNT2020/35417","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Clustering analysis is one of the hot research fields in data mining. EM algorithm is an effective method to realize maximum likelihood estimation, which is mainly used for parameter estimation of incomplete data. It greatly simplifies the likelihood function equation by assuming the existence of latent variable, while maximum likelihood estimation is a commonly used parameter estimation method, and the EM algorithm makes its application more extensive. This paper takes clustering algorithm as the main research object, introduces the basic idea of maximum likelihood estimation, describes the basic theory of EM algorithm, and realizes EM algorithm. The experimental results show that compared with the traditional clustering algorithm, the EM algorithm has better convergence and clustering ability.
基于潜在变量挖掘的EM聚类算法研究与实现
聚类分析是数据挖掘领域的研究热点之一。EM算法是实现极大似然估计的有效方法,主要用于不完全数据的参数估计。它通过假设潜在变量的存在极大地简化了似然函数方程,而极大似然估计是一种常用的参数估计方法,EM算法使其应用更加广泛。本文以聚类算法为主要研究对象,介绍了极大似然估计的基本思想,阐述了EM算法的基本理论,实现了EM算法。实验结果表明,与传统聚类算法相比,EM算法具有更好的收敛性和聚类能力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信