Determination of erosion equation factors of AISI1020 by experimental data

IF 1.2 4区 工程技术 Q3 ENGINEERING, MECHANICAL
Mehdi Akhondizadeh, Nader Afkhami
{"title":"Determination of erosion equation factors of AISI1020 by experimental data","authors":"Mehdi Akhondizadeh, Nader Afkhami","doi":"10.1051/meca/2019087","DOIUrl":null,"url":null,"abstract":"Erosive wear is material removal due to the impingement of granular flow. In the present work, the effects of influencing parameters including flow velocity, incidence angle and grain size on erosive behavior of AISI1020 subjected to a flow of SiC particles has been investigated by employing an erosion wear test machine. The experiments have been performed at the different values of impact angle, flow velocity and particle size. Two tests have been performed for every set of conditions and the average of them has been presented. Results showed that the erosive wear maximizes at the impact angles of 30° and 45°. The flow of small particles resulted in more wear contrast to the large particles. Results also indicated that the influence of flow velocity was higher than the influence of impact angle and particle size. It means that minimizing the flow velocity results in more efficient results to reduce erosion. Moreover, the experimental data were used to determine appropriate coefficients for using in an erosion equation given by literature. New factors gave erosion evaluations which had appropriate accordance with the experimental data.","PeriodicalId":49018,"journal":{"name":"Mechanics & Industry","volume":"51 1","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mechanics & Industry","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1051/meca/2019087","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Erosive wear is material removal due to the impingement of granular flow. In the present work, the effects of influencing parameters including flow velocity, incidence angle and grain size on erosive behavior of AISI1020 subjected to a flow of SiC particles has been investigated by employing an erosion wear test machine. The experiments have been performed at the different values of impact angle, flow velocity and particle size. Two tests have been performed for every set of conditions and the average of them has been presented. Results showed that the erosive wear maximizes at the impact angles of 30° and 45°. The flow of small particles resulted in more wear contrast to the large particles. Results also indicated that the influence of flow velocity was higher than the influence of impact angle and particle size. It means that minimizing the flow velocity results in more efficient results to reduce erosion. Moreover, the experimental data were used to determine appropriate coefficients for using in an erosion equation given by literature. New factors gave erosion evaluations which had appropriate accordance with the experimental data.
用实验数据确定AISI1020侵蚀方程因子
冲蚀磨损是由于颗粒流的冲击而导致材料的去除。本文利用冲蚀磨损试验机,研究了流速、入射角和晶粒尺寸等影响参数对AISI1020在SiC颗粒流动下的冲蚀行为的影响。在不同的冲击角、流速和颗粒尺寸下进行了实验。对每组条件进行了两次测试,并给出了它们的平均值。结果表明:冲击角为30°和45°时,冲蚀磨损最大;与大颗粒相比,小颗粒的流动造成了更大的磨损。结果还表明,流速的影响大于冲击角和粒径的影响。这意味着最小化流速可以更有效地减少侵蚀。此外,还利用实验数据确定了用于文献给出的侵蚀方程的适当系数。新的侵蚀因子评价与试验数据吻合较好。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Mechanics & Industry
Mechanics & Industry ENGINEERING, MECHANICAL-MECHANICS
CiteScore
2.80
自引率
0.00%
发文量
25
审稿时长
>12 weeks
期刊介绍: An International Journal on Mechanical Sciences and Engineering Applications With papers from industry, Research and Development departments and academic institutions, this journal acts as an interface between research and industry, coordinating and disseminating scientific and technical mechanical research in relation to industrial activities. Targeted readers are technicians, engineers, executives, researchers, and teachers who are working in industrial companies as managers or in Research and Development departments, technical centres, laboratories, universities, technical and engineering schools. The journal is an AFM (Association Française de Mécanique) publication.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信