{"title":"Determination of erosion equation factors of AISI1020 by experimental data","authors":"Mehdi Akhondizadeh, Nader Afkhami","doi":"10.1051/meca/2019087","DOIUrl":null,"url":null,"abstract":"Erosive wear is material removal due to the impingement of granular flow. In the present work, the effects of influencing parameters including flow velocity, incidence angle and grain size on erosive behavior of AISI1020 subjected to a flow of SiC particles has been investigated by employing an erosion wear test machine. The experiments have been performed at the different values of impact angle, flow velocity and particle size. Two tests have been performed for every set of conditions and the average of them has been presented. Results showed that the erosive wear maximizes at the impact angles of 30° and 45°. The flow of small particles resulted in more wear contrast to the large particles. Results also indicated that the influence of flow velocity was higher than the influence of impact angle and particle size. It means that minimizing the flow velocity results in more efficient results to reduce erosion. Moreover, the experimental data were used to determine appropriate coefficients for using in an erosion equation given by literature. New factors gave erosion evaluations which had appropriate accordance with the experimental data.","PeriodicalId":49018,"journal":{"name":"Mechanics & Industry","volume":"51 1","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mechanics & Industry","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1051/meca/2019087","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Erosive wear is material removal due to the impingement of granular flow. In the present work, the effects of influencing parameters including flow velocity, incidence angle and grain size on erosive behavior of AISI1020 subjected to a flow of SiC particles has been investigated by employing an erosion wear test machine. The experiments have been performed at the different values of impact angle, flow velocity and particle size. Two tests have been performed for every set of conditions and the average of them has been presented. Results showed that the erosive wear maximizes at the impact angles of 30° and 45°. The flow of small particles resulted in more wear contrast to the large particles. Results also indicated that the influence of flow velocity was higher than the influence of impact angle and particle size. It means that minimizing the flow velocity results in more efficient results to reduce erosion. Moreover, the experimental data were used to determine appropriate coefficients for using in an erosion equation given by literature. New factors gave erosion evaluations which had appropriate accordance with the experimental data.
期刊介绍:
An International Journal on Mechanical Sciences and Engineering Applications
With papers from industry, Research and Development departments and academic institutions, this journal acts as an interface between research and industry, coordinating and disseminating scientific and technical mechanical research in relation to industrial activities.
Targeted readers are technicians, engineers, executives, researchers, and teachers who are working in industrial companies as managers or in Research and Development departments, technical centres, laboratories, universities, technical and engineering schools. The journal is an AFM (Association Française de Mécanique) publication.