g-C3N4 coupled with 2,4,6-tris(4-aminophenyl)-1,3,5-triazine via π–π interactions enhanced visible-light photocatalytic H2 evolution from water splitting†

IF 4.4 3区 化学 Q2 CHEMISTRY, PHYSICAL
Chen-Chuang Li, Ikram Ullah, Gang Wang and An-Wu Xu
{"title":"g-C3N4 coupled with 2,4,6-tris(4-aminophenyl)-1,3,5-triazine via π–π interactions enhanced visible-light photocatalytic H2 evolution from water splitting†","authors":"Chen-Chuang Li, Ikram Ullah, Gang Wang and An-Wu Xu","doi":"10.1039/D3CY00837A","DOIUrl":null,"url":null,"abstract":"<p >Graphitic carbon nitride (g-C<small><sub>3</sub></small>N<small><sub>4</sub></small>) is an attractive candidate among the most promising metal-free photocatalysts under visible light for solar-to-fuel production. Nevertheless, the low photocatalytic performance and fast recombination rate of photoinduced charge carriers prevent its practical applications. Therefore, the integration of g-C<small><sub>3</sub></small>N<small><sub>4</sub></small> with an appropriate material is highly desirable for enhancing H<small><sub>2</sub></small> production. In this work, we report a TAPT/CN composite photocatalyst formed from g-C<small><sub>3</sub></small>N<small><sub>4</sub></small> and 2,4,6-tris(4-aminophenyl)-1,3,5-triazine (TAPT) through π–π interactions and hydrogen bonds to enhance the photocatalytic activity. The small TAPT molecules act as a hole relay and thus elevate the transfer rate of holes from g-C<small><sub>3</sub></small>N<small><sub>4</sub></small> to triethanolamine (TEOA); this in turn favors more electron transfer to the Pt cocatalyst and finally promotes the visible-light-driven H<small><sub>2</sub></small> generation. The experimental results display that photocatalytic activity is greatly boosted by TAPT molecules in TAPT/CN nanoheterostructures. The optimized 5% TAPT/CN (5 wt% TAPT loading) sample achieves a maximum H<small><sub>2</sub></small> evolution rate of 99.54 μmol h<small><sup>−1</sup></small>, which is 7.1 times higher than that of bare g-C<small><sub>3</sub></small>N<small><sub>4</sub></small> (14.01 μmol h<small><sup>−1</sup></small>). Additionally, there is no significant decrease in H<small><sub>2</sub></small> production after five consecutive cycles of continuous visible-light irradiation of up to 20 hours. We expect that this research will open the door to designing other organic material-decorated g-C<small><sub>3</sub></small>N<small><sub>4</sub></small> photocatalysts for potential applications in solar-to-hydrogen energy conversion.</p>","PeriodicalId":66,"journal":{"name":"Catalysis Science & Technology","volume":" 18","pages":" 5456-5461"},"PeriodicalIF":4.4000,"publicationDate":"2023-08-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Catalysis Science & Technology","FirstCategoryId":"92","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2023/cy/d3cy00837a","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Graphitic carbon nitride (g-C3N4) is an attractive candidate among the most promising metal-free photocatalysts under visible light for solar-to-fuel production. Nevertheless, the low photocatalytic performance and fast recombination rate of photoinduced charge carriers prevent its practical applications. Therefore, the integration of g-C3N4 with an appropriate material is highly desirable for enhancing H2 production. In this work, we report a TAPT/CN composite photocatalyst formed from g-C3N4 and 2,4,6-tris(4-aminophenyl)-1,3,5-triazine (TAPT) through π–π interactions and hydrogen bonds to enhance the photocatalytic activity. The small TAPT molecules act as a hole relay and thus elevate the transfer rate of holes from g-C3N4 to triethanolamine (TEOA); this in turn favors more electron transfer to the Pt cocatalyst and finally promotes the visible-light-driven H2 generation. The experimental results display that photocatalytic activity is greatly boosted by TAPT molecules in TAPT/CN nanoheterostructures. The optimized 5% TAPT/CN (5 wt% TAPT loading) sample achieves a maximum H2 evolution rate of 99.54 μmol h−1, which is 7.1 times higher than that of bare g-C3N4 (14.01 μmol h−1). Additionally, there is no significant decrease in H2 production after five consecutive cycles of continuous visible-light irradiation of up to 20 hours. We expect that this research will open the door to designing other organic material-decorated g-C3N4 photocatalysts for potential applications in solar-to-hydrogen energy conversion.

Abstract Image

g-C3N4通过π -π相互作用与2,4,6-三(4-氨基苯基)-1,3,5-三嗪偶联,增强了可见光光催化水裂解H2的析出
石墨氮化碳(g-C3N4)是在可见光下最有前途的无金属光催化剂之一,用于太阳能燃料生产。然而,光诱导载流子的光催化性能低,复合速度快,阻碍了其实际应用。因此,g-C3N4与合适的材料的集成对于提高H2的产率是非常理想的。本文报道了由g-C3N4和2,4,6-三(4-氨基苯基)-1,3,5-三嗪(TAPT)通过π -π相互作用和氢键形成的TAPT/CN复合光催化剂,以增强其光催化活性。tpt小分子作为空穴继电器,提高了空穴从g-C3N4向三乙醇胺(TEOA)的转移速率;这反过来又有利于更多的电子转移到Pt助催化剂上,最终促进可见光驱动的H2生成。实验结果表明,在纳米异质结构中,tpt分子的光催化活性大大提高。优化后的5% TAPT/CN (5 wt% TAPT加载量)样品H2的最大析出率为99.54 μmol h−1,是裸g-C3N4 (14.01 μmol h−1)的7.1倍。此外,在连续5个周期的连续可见光照射长达20小时后,H2的产量没有显著下降。我们期望这项研究将为设计其他有机材料装饰的g-C3N4光催化剂打开大门,以潜在地应用于太阳能到氢的能源转换。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Catalysis Science & Technology
Catalysis Science & Technology CHEMISTRY, PHYSICAL-
CiteScore
8.70
自引率
6.00%
发文量
587
审稿时长
1.5 months
期刊介绍: A multidisciplinary journal focusing on cutting edge research across all fundamental science and technological aspects of catalysis. Editor-in-chief: Bert Weckhuysen Impact factor: 5.0 Time to first decision (peer reviewed only): 31 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信