{"title":"Nitrogen and phosphorus addition mediate soil priming effects via affecting microbial stoichiometric balance in an alpine meadow.","authors":"Wenkuan Qin, Jiguang Feng, Qiufang Zhang, Xia Yuan, Huakun Zhou, Biao Zhu","doi":"10.1016/j.scitotenv.2023.168350","DOIUrl":null,"url":null,"abstract":"<p><p>Priming effect (PE) plays a crucial role in regulating the decomposition of soil organic matter (SOM). Multiple empirical results have shown that nitrogen (N) and phosphorus (P) addition can significantly alter the direction and intensity of PE, which may significantly affect carbon turnover in grasslands, especially in alpine meadows that are sensitive to N and P enrichment. To evaluate the PE responses to N and/or P addition, we conducted an incubation experiment by adding <sup>13</sup>C-labeled glucose and nutrient additions (+N, +P, and +NP) in soils collected from an alpine meadow. The soils were incubated for 30 days and soil/microbial properties and enzyme activities were measured. Partial correlation and linear regression analyses were then performed to investigate their correlations with PE. The results showed that mean PE intensity among all treatments was 0.61 mg C g<sup>-1</sup> soil or 1.35 (ratio). Nitrogen addition increased PE intensity, which was attributed to the better match between soil resources and microbial demands and enhanced enzyme activities. However, the PE intensity in P-addition soils was lower than that in control soils. This discrepancy may be related to the P-induced decrease of N availability and stronger microbial C/N imbalance. No significant response of PE intensity to NP addition was detected, and this could be explained by the offset of positive N effects and negative P effects on microbial decomposition. In this experiment, N or P addition altered the PE intensity by mediating the match between soil C:N:P ratio and microbial demands, which supported the stoichiometric decomposition hypothesis. Overall, our study highlights the importance of considering the C, N and P coupling in regulating PE, and underscores the need for further investigation into the effects of soil P on microbial activity and SOM decomposition.</p>","PeriodicalId":422,"journal":{"name":"Science of the Total Environment","volume":" ","pages":"168350"},"PeriodicalIF":8.2000,"publicationDate":"2024-01-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science of the Total Environment","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1016/j.scitotenv.2023.168350","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/11/5 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Priming effect (PE) plays a crucial role in regulating the decomposition of soil organic matter (SOM). Multiple empirical results have shown that nitrogen (N) and phosphorus (P) addition can significantly alter the direction and intensity of PE, which may significantly affect carbon turnover in grasslands, especially in alpine meadows that are sensitive to N and P enrichment. To evaluate the PE responses to N and/or P addition, we conducted an incubation experiment by adding 13C-labeled glucose and nutrient additions (+N, +P, and +NP) in soils collected from an alpine meadow. The soils were incubated for 30 days and soil/microbial properties and enzyme activities were measured. Partial correlation and linear regression analyses were then performed to investigate their correlations with PE. The results showed that mean PE intensity among all treatments was 0.61 mg C g-1 soil or 1.35 (ratio). Nitrogen addition increased PE intensity, which was attributed to the better match between soil resources and microbial demands and enhanced enzyme activities. However, the PE intensity in P-addition soils was lower than that in control soils. This discrepancy may be related to the P-induced decrease of N availability and stronger microbial C/N imbalance. No significant response of PE intensity to NP addition was detected, and this could be explained by the offset of positive N effects and negative P effects on microbial decomposition. In this experiment, N or P addition altered the PE intensity by mediating the match between soil C:N:P ratio and microbial demands, which supported the stoichiometric decomposition hypothesis. Overall, our study highlights the importance of considering the C, N and P coupling in regulating PE, and underscores the need for further investigation into the effects of soil P on microbial activity and SOM decomposition.
期刊介绍:
The Science of the Total Environment is an international journal dedicated to scientific research on the environment and its interaction with humanity. It covers a wide range of disciplines and seeks to publish innovative, hypothesis-driven, and impactful research that explores the entire environment, including the atmosphere, lithosphere, hydrosphere, biosphere, and anthroposphere.
The journal's updated Aims & Scope emphasizes the importance of interdisciplinary environmental research with broad impact. Priority is given to studies that advance fundamental understanding and explore the interconnectedness of multiple environmental spheres. Field studies are preferred, while laboratory experiments must demonstrate significant methodological advancements or mechanistic insights with direct relevance to the environment.