Zhimin Luo, Wujin Sun, Jun Fang, KangJu Lee, Song Li, Zhen Gu, Mehmet R. Dokmeci, Ali Khademhosseini
{"title":"Biodegradable Gelatin Methacryloyl Microneedles for Transdermal Drug Delivery","authors":"Zhimin Luo, Wujin Sun, Jun Fang, KangJu Lee, Song Li, Zhen Gu, Mehmet R. Dokmeci, Ali Khademhosseini","doi":"10.1002/adhm.201801054","DOIUrl":null,"url":null,"abstract":"<p>Biocompatible and bioresponsive microneedles (MNs) are emerging technology platforms for sustained drug release with a potential to be a key player in transdermal delivery of therapeutics. In this paper, an innovative biodegradable MNs patch for the sustained delivery of drugs using a polymer patch, which can adjust delivery rates based on its crosslinking degree, is reported. Gelatin methacryloyl (GelMA) is used as the base for engineering biodegradable MNs. The anticancer drug doxorubicin (DOX) is loaded into GelMA MNs using the one molding step. The GelMA MNs can efficiently penetrate the <i>stratum corneum</i> layer of a mouse cadaver skin. Mechanical properties and drug release behavior of the GelMA MNs can be adjusted by tuning the degree of crosslinking. The efficacy of the DOX released from the GelMA MNs is tested and the anticancer efficacy of the released drugs against melanoma cell line A375 is demonstrated. Since GelMA is a versatile material in engineering tissue scaffolds, it is expected that the GelMA MNs can be used as a platform for the delivery of various therapeutics.</p>","PeriodicalId":113,"journal":{"name":"Advanced Healthcare Materials","volume":"8 3","pages":""},"PeriodicalIF":9.6000,"publicationDate":"2018-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1002/adhm.201801054","citationCount":"163","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Healthcare Materials","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/adhm.201801054","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 163
Abstract
Biocompatible and bioresponsive microneedles (MNs) are emerging technology platforms for sustained drug release with a potential to be a key player in transdermal delivery of therapeutics. In this paper, an innovative biodegradable MNs patch for the sustained delivery of drugs using a polymer patch, which can adjust delivery rates based on its crosslinking degree, is reported. Gelatin methacryloyl (GelMA) is used as the base for engineering biodegradable MNs. The anticancer drug doxorubicin (DOX) is loaded into GelMA MNs using the one molding step. The GelMA MNs can efficiently penetrate the stratum corneum layer of a mouse cadaver skin. Mechanical properties and drug release behavior of the GelMA MNs can be adjusted by tuning the degree of crosslinking. The efficacy of the DOX released from the GelMA MNs is tested and the anticancer efficacy of the released drugs against melanoma cell line A375 is demonstrated. Since GelMA is a versatile material in engineering tissue scaffolds, it is expected that the GelMA MNs can be used as a platform for the delivery of various therapeutics.
期刊介绍:
Advanced Healthcare Materials, a distinguished member of the esteemed Advanced portfolio, has been dedicated to disseminating cutting-edge research on materials, devices, and technologies for enhancing human well-being for over ten years. As a comprehensive journal, it encompasses a wide range of disciplines such as biomaterials, biointerfaces, nanomedicine and nanotechnology, tissue engineering, and regenerative medicine.