Schottky Heterojunction Nanosheet Array Achieving High-Current-Density Oxygen Evolution for Industrial Water Splitting Electrolyzers

IF 24.4 1区 材料科学 Q1 CHEMISTRY, PHYSICAL
Qunlei Wen, Ke Yang, Danji Huang, Gao Cheng, Xiaomeng Ai, Youwen Liu, Jiakun Fang, Huiqiao Li, Lin Yu, Tianyou Zhai
{"title":"Schottky Heterojunction Nanosheet Array Achieving High-Current-Density Oxygen Evolution for Industrial Water Splitting Electrolyzers","authors":"Qunlei Wen,&nbsp;Ke Yang,&nbsp;Danji Huang,&nbsp;Gao Cheng,&nbsp;Xiaomeng Ai,&nbsp;Youwen Liu,&nbsp;Jiakun Fang,&nbsp;Huiqiao Li,&nbsp;Lin Yu,&nbsp;Tianyou Zhai","doi":"10.1002/aenm.202102353","DOIUrl":null,"url":null,"abstract":"<p>Versatile catalyst systems with large current density under industrial conditions are pivotal to give impetus to hydrogen energy from fundamental to practical applications. Herein, a Schottky heterojunction nanosheet array composed of dispersed NiFe hydroxide nanoparticles and ultrathin NiS nanosheets (NiFe LDH/NiS) is proposed to regulate cooperatively mass transport and electronic structure for triggering oxygen evolution reaction (OER) activity at high current. In catalytic systems, the rich porosity of the NiS nanosheet array contributes abundant catalytic sites and good infiltration of the electrolyte for fast mass transfer. Furthermore, theoretical calculations reveal the coupling of NiFe LDH onto the NiS could tune the d-band center of Ni(Fe) atoms and the binding strength of oxygen intermediates for favorable OER kinetics. Therefore, the NiFe LDH/NiS Schottky heterojunction exhibits a remarkable OER activity, delivering a current density of 1000 mA cm<sup>–2</sup> at the ultralow overpotential of 325 mV. Meanwhile, scaled-up NiFe LDH/NiS electrodes are implemented in an industrial water splitting electrolyzer and exhibit a stable cell voltage of 2.01 V to deliver a constant catalytic current of 8000 mA over 80 h, saving 0.215 kWh of electricity to generate more hydrogen per cubic meter than commercial Raney Ni electrodes.</p>","PeriodicalId":111,"journal":{"name":"Advanced Energy Materials","volume":null,"pages":null},"PeriodicalIF":24.4000,"publicationDate":"2021-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"116","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Energy Materials","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/aenm.202102353","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 116

Abstract

Versatile catalyst systems with large current density under industrial conditions are pivotal to give impetus to hydrogen energy from fundamental to practical applications. Herein, a Schottky heterojunction nanosheet array composed of dispersed NiFe hydroxide nanoparticles and ultrathin NiS nanosheets (NiFe LDH/NiS) is proposed to regulate cooperatively mass transport and electronic structure for triggering oxygen evolution reaction (OER) activity at high current. In catalytic systems, the rich porosity of the NiS nanosheet array contributes abundant catalytic sites and good infiltration of the electrolyte for fast mass transfer. Furthermore, theoretical calculations reveal the coupling of NiFe LDH onto the NiS could tune the d-band center of Ni(Fe) atoms and the binding strength of oxygen intermediates for favorable OER kinetics. Therefore, the NiFe LDH/NiS Schottky heterojunction exhibits a remarkable OER activity, delivering a current density of 1000 mA cm–2 at the ultralow overpotential of 325 mV. Meanwhile, scaled-up NiFe LDH/NiS electrodes are implemented in an industrial water splitting electrolyzer and exhibit a stable cell voltage of 2.01 V to deliver a constant catalytic current of 8000 mA over 80 h, saving 0.215 kWh of electricity to generate more hydrogen per cubic meter than commercial Raney Ni electrodes.

Abstract Image

肖特基异质结纳米片阵列实现工业水分解电解槽的高电流密度析氧
工业条件下具有大电流密度的多功能催化剂体系是推动氢能从基础到实际应用的关键。本文提出了一种由分散的NiFe氢氧化物纳米颗粒和超薄NiS纳米片(NiFe LDH/NiS)组成的肖特基异质结纳米片阵列,该阵列可以调节高电流下的质量输运和电子结构,从而触发出氧反应(OER)活性。在催化体系中,NiS纳米片阵列丰富的孔隙率有助于丰富的催化位点和良好的电解质渗透,从而实现快速传质。此外,理论计算表明,NiFe LDH与NiS的耦合可以调整Ni(Fe)原子的d带中心和氧中间体的结合强度,从而有利于OER动力学。因此,NiFe LDH/NiS肖特基异质结表现出显著的OER活性,在325 mV的超低过电位下提供1000 mA cm-2的电流密度。与此同时,在工业水分解电解槽中实现了放大的NiFe LDH/NiS电极,其电池电压稳定在2.01 V,在80 h内提供8000 mA的恒定催化电流,比商用Raney Ni电极每立方米节省0.215千瓦时的电力,产生更多的氢气。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Advanced Energy Materials
Advanced Energy Materials CHEMISTRY, PHYSICAL-ENERGY & FUELS
CiteScore
41.90
自引率
4.00%
发文量
889
审稿时长
1.4 months
期刊介绍: Established in 2011, Advanced Energy Materials is an international, interdisciplinary, English-language journal that focuses on materials used in energy harvesting, conversion, and storage. It is regarded as a top-quality journal alongside Advanced Materials, Advanced Functional Materials, and Small. With a 2022 Impact Factor of 27.8, Advanced Energy Materials is considered a prime source for the best energy-related research. The journal covers a wide range of topics in energy-related research, including organic and inorganic photovoltaics, batteries and supercapacitors, fuel cells, hydrogen generation and storage, thermoelectrics, water splitting and photocatalysis, solar fuels and thermosolar power, magnetocalorics, and piezoelectronics. The readership of Advanced Energy Materials includes materials scientists, chemists, physicists, and engineers in both academia and industry. The journal is indexed in various databases and collections, such as Advanced Technologies & Aerospace Database, FIZ Karlsruhe, INSPEC (IET), Science Citation Index Expanded, Technology Collection, and Web of Science, among others.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信