Pitfalls in machine learning-based assessment of tumor-infiltrating lymphocytes in breast cancer: A report of the International Immuno-Oncology Biomarker Working Group on Breast Cancer

IF 5.6 2区 医学 Q1 ONCOLOGY
Jeppe Thagaard, Glenn Broeckx, David B Page, Chowdhury Arif Jahangir, Sara Verbandt, Zuzana Kos, Rajarsi Gupta, Reena Khiroya, Khalid Abduljabbar, Gabriela Acosta Haab, Balazs Acs, Guray Akturk, Jonas S Almeida, Isabel Alvarado-Cabrero, Mohamed Amgad, Farid Azmoudeh-Ardalan, Sunil Badve, Nurkhairul Bariyah Baharun, Eva Balslev, Enrique R Bellolio, Vydehi Bheemaraju, Kim RM Blenman, Luciana Botinelly Mendonça Fujimoto, Najat Bouchmaa, Octavio Burgues, Alexandros Chardas, Maggie Chon U Cheang, Francesco Ciompi, Lee AD Cooper, An Coosemans, Germán Corredor, Anders B Dahl, Flavio Luis Dantas Portela, Frederik Deman, Sandra Demaria, Johan Doré Hansen, Sarah N Dudgeon, Thomas Ebstrup, Mahmoud Elghazawy, Claudio Fernandez-Martín, Stephen B Fox, William M Gallagher, Jennifer M Giltnane, Sacha Gnjatic, Paula I Gonzalez-Ericsson, Anita Grigoriadis, Niels Halama, Matthew G Hanna, Aparna Harbhajanka, Steven N Hart, Johan Hartman, Søren Hauberg, Stephen Hewitt, Akira I Hida, Hugo M Horlings, Zaheed Husain, Evangelos Hytopoulos, Sheeba Irshad, Emiel AM Janssen, Mohamed Kahila, Tatsuki R Kataoka, Kosuke Kawaguchi, Durga Kharidehal, Andrey I Khramtsov, Umay Kiraz, Pawan Kirtani, Liudmila L Kodach, Konstanty Korski, Anikó Kovács, Anne-Vibeke Laenkholm, Corinna Lang-Schwarz, Denis Larsimont, Jochen K Lennerz, Marvin Lerousseau, Xiaoxian Li, Amy Ly, Anant Madabhushi, Sai K Maley, Vidya Manur Narasimhamurthy, Douglas K Marks, Elizabeth S McDonald, Ravi Mehrotra, Stefan Michiels, Fayyaz ul Amir Afsar Minhas, Shachi Mittal, David A Moore, Shamim Mushtaq, Hussain Nighat, Thomas Papathomas, Frederique Penault-Llorca, Rashindrie D Perera, Christopher J Pinard, Juan Carlos Pinto-Cardenas, Giancarlo Pruneri, Lajos Pusztai, Arman Rahman, Nasir Mahmood Rajpoot, Bernardo Leon Rapoport, Tilman T Rau, Jorge S Reis-Filho, Joana M Ribeiro, David Rimm, Anne Roslind, Anne Vincent-Salomon, Manuel Salto-Tellez, Joel Saltz, Shahin Sayed, Ely Scott, Kalliopi P Siziopikou, Christos Sotiriou, Albrecht Stenzinger, Maher A Sughayer, Daniel Sur, Susan Fineberg, Fraser Symmans, Sunao Tanaka, Timothy Taxter, Sabine Tejpar, Jonas Teuwen, E Aubrey Thompson, Trine Tramm, William T Tran, Jeroen van der Laak, Paul J van Diest, Gregory E Verghese, Giuseppe Viale, Michael Vieth, Noorul Wahab, Thomas Walter, Yannick Waumans, Hannah Y Wen, Wentao Yang, Yinyin Yuan, Reena Md Zin, Sylvia Adams, John Bartlett, Sibylle Loibl, Carsten Denkert, Peter Savas, Sherene Loi, Roberto Salgado, Elisabeth Specht Stovgaard
{"title":"Pitfalls in machine learning-based assessment of tumor-infiltrating lymphocytes in breast cancer: A report of the International Immuno-Oncology Biomarker Working Group on Breast Cancer","authors":"Jeppe Thagaard,&nbsp;Glenn Broeckx,&nbsp;David B Page,&nbsp;Chowdhury Arif Jahangir,&nbsp;Sara Verbandt,&nbsp;Zuzana Kos,&nbsp;Rajarsi Gupta,&nbsp;Reena Khiroya,&nbsp;Khalid Abduljabbar,&nbsp;Gabriela Acosta Haab,&nbsp;Balazs Acs,&nbsp;Guray Akturk,&nbsp;Jonas S Almeida,&nbsp;Isabel Alvarado-Cabrero,&nbsp;Mohamed Amgad,&nbsp;Farid Azmoudeh-Ardalan,&nbsp;Sunil Badve,&nbsp;Nurkhairul Bariyah Baharun,&nbsp;Eva Balslev,&nbsp;Enrique R Bellolio,&nbsp;Vydehi Bheemaraju,&nbsp;Kim RM Blenman,&nbsp;Luciana Botinelly Mendonça Fujimoto,&nbsp;Najat Bouchmaa,&nbsp;Octavio Burgues,&nbsp;Alexandros Chardas,&nbsp;Maggie Chon U Cheang,&nbsp;Francesco Ciompi,&nbsp;Lee AD Cooper,&nbsp;An Coosemans,&nbsp;Germán Corredor,&nbsp;Anders B Dahl,&nbsp;Flavio Luis Dantas Portela,&nbsp;Frederik Deman,&nbsp;Sandra Demaria,&nbsp;Johan Doré Hansen,&nbsp;Sarah N Dudgeon,&nbsp;Thomas Ebstrup,&nbsp;Mahmoud Elghazawy,&nbsp;Claudio Fernandez-Martín,&nbsp;Stephen B Fox,&nbsp;William M Gallagher,&nbsp;Jennifer M Giltnane,&nbsp;Sacha Gnjatic,&nbsp;Paula I Gonzalez-Ericsson,&nbsp;Anita Grigoriadis,&nbsp;Niels Halama,&nbsp;Matthew G Hanna,&nbsp;Aparna Harbhajanka,&nbsp;Steven N Hart,&nbsp;Johan Hartman,&nbsp;Søren Hauberg,&nbsp;Stephen Hewitt,&nbsp;Akira I Hida,&nbsp;Hugo M Horlings,&nbsp;Zaheed Husain,&nbsp;Evangelos Hytopoulos,&nbsp;Sheeba Irshad,&nbsp;Emiel AM Janssen,&nbsp;Mohamed Kahila,&nbsp;Tatsuki R Kataoka,&nbsp;Kosuke Kawaguchi,&nbsp;Durga Kharidehal,&nbsp;Andrey I Khramtsov,&nbsp;Umay Kiraz,&nbsp;Pawan Kirtani,&nbsp;Liudmila L Kodach,&nbsp;Konstanty Korski,&nbsp;Anikó Kovács,&nbsp;Anne-Vibeke Laenkholm,&nbsp;Corinna Lang-Schwarz,&nbsp;Denis Larsimont,&nbsp;Jochen K Lennerz,&nbsp;Marvin Lerousseau,&nbsp;Xiaoxian Li,&nbsp;Amy Ly,&nbsp;Anant Madabhushi,&nbsp;Sai K Maley,&nbsp;Vidya Manur Narasimhamurthy,&nbsp;Douglas K Marks,&nbsp;Elizabeth S McDonald,&nbsp;Ravi Mehrotra,&nbsp;Stefan Michiels,&nbsp;Fayyaz ul Amir Afsar Minhas,&nbsp;Shachi Mittal,&nbsp;David A Moore,&nbsp;Shamim Mushtaq,&nbsp;Hussain Nighat,&nbsp;Thomas Papathomas,&nbsp;Frederique Penault-Llorca,&nbsp;Rashindrie D Perera,&nbsp;Christopher J Pinard,&nbsp;Juan Carlos Pinto-Cardenas,&nbsp;Giancarlo Pruneri,&nbsp;Lajos Pusztai,&nbsp;Arman Rahman,&nbsp;Nasir Mahmood Rajpoot,&nbsp;Bernardo Leon Rapoport,&nbsp;Tilman T Rau,&nbsp;Jorge S Reis-Filho,&nbsp;Joana M Ribeiro,&nbsp;David Rimm,&nbsp;Anne Roslind,&nbsp;Anne Vincent-Salomon,&nbsp;Manuel Salto-Tellez,&nbsp;Joel Saltz,&nbsp;Shahin Sayed,&nbsp;Ely Scott,&nbsp;Kalliopi P Siziopikou,&nbsp;Christos Sotiriou,&nbsp;Albrecht Stenzinger,&nbsp;Maher A Sughayer,&nbsp;Daniel Sur,&nbsp;Susan Fineberg,&nbsp;Fraser Symmans,&nbsp;Sunao Tanaka,&nbsp;Timothy Taxter,&nbsp;Sabine Tejpar,&nbsp;Jonas Teuwen,&nbsp;E Aubrey Thompson,&nbsp;Trine Tramm,&nbsp;William T Tran,&nbsp;Jeroen van der Laak,&nbsp;Paul J van Diest,&nbsp;Gregory E Verghese,&nbsp;Giuseppe Viale,&nbsp;Michael Vieth,&nbsp;Noorul Wahab,&nbsp;Thomas Walter,&nbsp;Yannick Waumans,&nbsp;Hannah Y Wen,&nbsp;Wentao Yang,&nbsp;Yinyin Yuan,&nbsp;Reena Md Zin,&nbsp;Sylvia Adams,&nbsp;John Bartlett,&nbsp;Sibylle Loibl,&nbsp;Carsten Denkert,&nbsp;Peter Savas,&nbsp;Sherene Loi,&nbsp;Roberto Salgado,&nbsp;Elisabeth Specht Stovgaard","doi":"10.1002/path.6155","DOIUrl":null,"url":null,"abstract":"<p>The clinical significance of the tumor-immune interaction in breast cancer is now established, and tumor-infiltrating lymphocytes (TILs) have emerged as predictive and prognostic biomarkers for patients with triple-negative (estrogen receptor, progesterone receptor, and HER2-negative) breast cancer and HER2-positive breast cancer. How computational assessments of TILs might complement manual TIL assessment in trial and daily practices is currently debated. Recent efforts to use machine learning (ML) to automatically evaluate TILs have shown promising results. We review state-of-the-art approaches and identify pitfalls and challenges of automated TIL evaluation by studying the root cause of ML discordances in comparison to manual TIL quantification. We categorize our findings into four main topics: (1) technical slide issues, (2) ML and image analysis aspects, (3) data challenges, and (4) validation issues. The main reason for discordant assessments is the inclusion of false-positive areas or cells identified by performance on certain tissue patterns or design choices in the computational implementation. To aid the adoption of ML for TIL assessment, we provide an in-depth discussion of ML and image analysis, including validation issues that need to be considered before reliable computational reporting of TILs can be incorporated into the trial and routine clinical management of patients with triple-negative breast cancer. © 2023 The Authors. <i>The Journal of Pathology</i> published by John Wiley &amp; Sons Ltd on behalf of The Pathological Society of Great Britain and Ireland.</p>","PeriodicalId":232,"journal":{"name":"The Journal of Pathology","volume":"260 5","pages":"498-513"},"PeriodicalIF":5.6000,"publicationDate":"2023-08-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/path.6155","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Journal of Pathology","FirstCategoryId":"3","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/path.6155","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ONCOLOGY","Score":null,"Total":0}
引用次数: 3

Abstract

The clinical significance of the tumor-immune interaction in breast cancer is now established, and tumor-infiltrating lymphocytes (TILs) have emerged as predictive and prognostic biomarkers for patients with triple-negative (estrogen receptor, progesterone receptor, and HER2-negative) breast cancer and HER2-positive breast cancer. How computational assessments of TILs might complement manual TIL assessment in trial and daily practices is currently debated. Recent efforts to use machine learning (ML) to automatically evaluate TILs have shown promising results. We review state-of-the-art approaches and identify pitfalls and challenges of automated TIL evaluation by studying the root cause of ML discordances in comparison to manual TIL quantification. We categorize our findings into four main topics: (1) technical slide issues, (2) ML and image analysis aspects, (3) data challenges, and (4) validation issues. The main reason for discordant assessments is the inclusion of false-positive areas or cells identified by performance on certain tissue patterns or design choices in the computational implementation. To aid the adoption of ML for TIL assessment, we provide an in-depth discussion of ML and image analysis, including validation issues that need to be considered before reliable computational reporting of TILs can be incorporated into the trial and routine clinical management of patients with triple-negative breast cancer. © 2023 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of The Pathological Society of Great Britain and Ireland.

Abstract Image

基于机器学习的乳腺癌肿瘤浸润淋巴细胞评估的缺陷:国际乳腺癌免疫肿瘤生物标志物工作组的报告
肿瘤-免疫相互作用在乳腺癌症中的临床意义现已确定,肿瘤浸润性淋巴细胞(TIL)已成为三阴性(雌激素受体、孕酮受体和HER2阴性)癌症和HER2阳性乳腺癌症患者的预测和预后生物标志物。TIL的计算评估如何在试验和日常实践中补充手动TIL评估,目前仍存在争议。最近使用机器学习(ML)来自动评估TIL的努力已经显示出有希望的结果。我们回顾了最先进的方法,并通过与手动TIL量化相比研究ML不一致的根本原因,确定了自动化TIL评估的陷阱和挑战。我们将我们的发现分为四个主要主题:(1)技术幻灯片问题,(2)ML和图像分析方面,(3)数据挑战,以及(4)验证问题。不一致评估的主要原因是在计算实现中包含了通过某些组织模式或设计选择的性能识别的假阳性区域或细胞。为了帮助采用ML进行TIL评估,我们对ML和图像分析进行了深入讨论,包括在将可靠的TIL计算报告纳入癌症三阴性乳腺癌患者的试验和常规临床管理之前需要考虑的验证问题。©2023作者。病理学杂志由John Wiley&;代表大不列颠及爱尔兰病理学会的Sons有限公司。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
The Journal of Pathology
The Journal of Pathology 医学-病理学
CiteScore
14.10
自引率
1.40%
发文量
144
审稿时长
3-8 weeks
期刊介绍: The Journal of Pathology aims to serve as a translational bridge between basic biomedical science and clinical medicine with particular emphasis on, but not restricted to, tissue based studies. The main interests of the Journal lie in publishing studies that further our understanding the pathophysiological and pathogenetic mechanisms of human disease. The Journal of Pathology welcomes investigative studies on human tissues, in vitro and in vivo experimental studies, and investigations based on animal models with a clear relevance to human disease, including transgenic systems. As well as original research papers, the Journal seeks to provide rapid publication in a variety of other formats, including editorials, review articles, commentaries and perspectives and other features, both contributed and solicited.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信