Byoung-Sun Lee, Jihyun Yoon, Changhoon Jung, Dong Young Kim, Seung-Yeol Jeon, Ki-Hong Kim, Jun-Ho Park, Hosang Park, Kang Hee Lee, Yoon-Sok Kang, Jin-Hwan Park, Heechul Jung*, Woong-Ryeol Yu*, Seok-Gwang Doo
{"title":"Silicon/Carbon Nanotube/BaTiO3 Nanocomposite Anode: Evidence for Enhanced Lithium-Ion Mobility Induced by the Local Piezoelectric Potential","authors":"Byoung-Sun Lee, Jihyun Yoon, Changhoon Jung, Dong Young Kim, Seung-Yeol Jeon, Ki-Hong Kim, Jun-Ho Park, Hosang Park, Kang Hee Lee, Yoon-Sok Kang, Jin-Hwan Park, Heechul Jung*, Woong-Ryeol Yu*, Seok-Gwang Doo","doi":"10.1021/acsnano.5b07674","DOIUrl":null,"url":null,"abstract":"<p >We report on the synergetic effects of silicon (Si) and BaTiO<sub>3</sub> (BTO) for applications as the anode of Li-ion batteries. The large expansion of Si during lithiation was exploited as an energy source <i>via</i> piezoelectric BTO nanoparticles. Si and BTO nanoparticles were dispersed in a matrix consisting of multiwalled carbon nanotubes (CNTs) using a high-energy ball-milling process. The mechanical stress resulting from the expansion of Si was transferred <i>via</i> the CNT matrix to the BTO, which can be poled, so that a piezoelectric potential is generated. We found that this local piezoelectric potential can improve the electrochemical performance of the Si/CNT/BTO nanocomposite anodes. Experimental measurements and simulation results support the increased mobility of Li-ions due to the local piezoelectric potential.</p>","PeriodicalId":21,"journal":{"name":"ACS Nano","volume":"10 2","pages":"2617–2627"},"PeriodicalIF":16.0000,"publicationDate":"2016-01-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1021/acsnano.5b07674","citationCount":"68","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Nano","FirstCategoryId":"88","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsnano.5b07674","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 68
Abstract
We report on the synergetic effects of silicon (Si) and BaTiO3 (BTO) for applications as the anode of Li-ion batteries. The large expansion of Si during lithiation was exploited as an energy source via piezoelectric BTO nanoparticles. Si and BTO nanoparticles were dispersed in a matrix consisting of multiwalled carbon nanotubes (CNTs) using a high-energy ball-milling process. The mechanical stress resulting from the expansion of Si was transferred via the CNT matrix to the BTO, which can be poled, so that a piezoelectric potential is generated. We found that this local piezoelectric potential can improve the electrochemical performance of the Si/CNT/BTO nanocomposite anodes. Experimental measurements and simulation results support the increased mobility of Li-ions due to the local piezoelectric potential.
期刊介绍:
ACS Nano, published monthly, serves as an international forum for comprehensive articles on nanoscience and nanotechnology research at the intersections of chemistry, biology, materials science, physics, and engineering. The journal fosters communication among scientists in these communities, facilitating collaboration, new research opportunities, and advancements through discoveries. ACS Nano covers synthesis, assembly, characterization, theory, and simulation of nanostructures, nanobiotechnology, nanofabrication, methods and tools for nanoscience and nanotechnology, and self- and directed-assembly. Alongside original research articles, it offers thorough reviews, perspectives on cutting-edge research, and discussions envisioning the future of nanoscience and nanotechnology.