Common dynamic estimation via structured low-rank approximation with multiple rank constraints

Q3 Engineering
Antonio Fazzi , Nicola Guglielmi , Ivan Markovsky , Konstantin Usevich
{"title":"Common dynamic estimation via structured low-rank approximation with multiple rank constraints","authors":"Antonio Fazzi ,&nbsp;Nicola Guglielmi ,&nbsp;Ivan Markovsky ,&nbsp;Konstantin Usevich","doi":"10.1016/j.ifacol.2021.08.342","DOIUrl":null,"url":null,"abstract":"<div><p>We consider the problem of detecting the common dynamic among several observed signals. It has been shown in (Markovsky et al., 2019) that the problem is equivalent to a generalization of the classical Hankel low-rank approximation to the case of multiple rank constraints. We propose an optimization method based on the integration of ordinary differential equations describing a descent dynamic for a suitable functional to be minimized. We show how the proposed algorithm improves the numerical solutions computed by existing subspace methods which solve the same problem.</p></div>","PeriodicalId":37894,"journal":{"name":"IFAC-PapersOnLine","volume":"54 7","pages":"Pages 103-107"},"PeriodicalIF":0.0000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2405896321011162/pdf?md5=0edcfa20e7c4799c82903c06a8495a45&pid=1-s2.0-S2405896321011162-main.pdf","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IFAC-PapersOnLine","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2405896321011162","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 1

Abstract

We consider the problem of detecting the common dynamic among several observed signals. It has been shown in (Markovsky et al., 2019) that the problem is equivalent to a generalization of the classical Hankel low-rank approximation to the case of multiple rank constraints. We propose an optimization method based on the integration of ordinary differential equations describing a descent dynamic for a suitable functional to be minimized. We show how the proposed algorithm improves the numerical solutions computed by existing subspace methods which solve the same problem.

基于多秩约束的结构化低秩近似的常见动态估计
我们考虑了多个观测信号之间的共同动态检测问题。在(Markovsky et al., 2019)中已经表明,该问题相当于对多秩约束情况下的经典Hankel低秩近似的推广。我们提出了一种基于描述下降动力学的常微分方程的积分的优化方法,用于最小化合适的泛函。我们展示了所提出的算法如何改进现有子空间方法计算的数值解,这些方法解决了相同的问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
IFAC-PapersOnLine
IFAC-PapersOnLine Engineering-Control and Systems Engineering
CiteScore
1.70
自引率
0.00%
发文量
1122
期刊介绍: All papers from IFAC meetings are published, in partnership with Elsevier, the IFAC Publisher, in theIFAC-PapersOnLine proceedings series hosted at the ScienceDirect web service. This series includes papers previously published in the IFAC website.The main features of the IFAC-PapersOnLine series are: -Online archive including papers from IFAC Symposia, Congresses, Conferences, and most Workshops. -All papers accepted at the meeting are published in PDF format - searchable and citable. -All papers published on the web site can be cited using the IFAC PapersOnLine ISSN and the individual paper DOI (Digital Object Identifier). The site is Open Access in nature - no charge is made to individuals for reading or downloading. Copyright of all papers belongs to IFAC and must be referenced if derivative journal papers are produced from the conference papers. All papers published in IFAC-PapersOnLine have undergone a peer review selection process according to the IFAC rules.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信