Thermal Analysis of a Rotating Micropolar Medium Using a Two-Temperature Micropolar Thermoelastic Model with Higher-Order Time Derivatives

IF 1.8 4区 材料科学 Q2 MATERIALS SCIENCE, CHARACTERIZATION & TESTING
A. E. Abouelregal, R. Alanazi, A. H. Sofiyev, H. M. Sedighi
{"title":"Thermal Analysis of a Rotating Micropolar Medium Using a Two-Temperature Micropolar Thermoelastic Model with Higher-Order Time Derivatives","authors":"A. E. Abouelregal,&nbsp;R. Alanazi,&nbsp;A. H. Sofiyev,&nbsp;H. M. Sedighi","doi":"10.1134/S1029959923030025","DOIUrl":null,"url":null,"abstract":"<p>In this work, the propagation of planar waves in a homogeneous micropolar thermoelastic medium is studied while the entire body rotates with a uniform angular speed. The coordinate system of the rotating medium is assumed to be stationary, and therefore the kinematic equations have two additional terms, namely, the gravitational and the Coriolis accelerations. The problem is addressed based on the two-temperature thermoelastic model with higher-order time derivatives and dual-phase lag, which can explain the effect of microscopic features in nonsimple materials. With certain boundary conditions and the normal mode approach, the variations in temperature, displacement, microrotation, and thermal stresses induced by heating are derived. In the absence of rotation and two-temperature factor, comparison is made with the results of classical thermoelastic models.</p>","PeriodicalId":726,"journal":{"name":"Physical Mesomechanics","volume":"26 3","pages":"251 - 266"},"PeriodicalIF":1.8000,"publicationDate":"2023-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical Mesomechanics","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1134/S1029959923030025","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, CHARACTERIZATION & TESTING","Score":null,"Total":0}
引用次数: 0

Abstract

In this work, the propagation of planar waves in a homogeneous micropolar thermoelastic medium is studied while the entire body rotates with a uniform angular speed. The coordinate system of the rotating medium is assumed to be stationary, and therefore the kinematic equations have two additional terms, namely, the gravitational and the Coriolis accelerations. The problem is addressed based on the two-temperature thermoelastic model with higher-order time derivatives and dual-phase lag, which can explain the effect of microscopic features in nonsimple materials. With certain boundary conditions and the normal mode approach, the variations in temperature, displacement, microrotation, and thermal stresses induced by heating are derived. In the absence of rotation and two-temperature factor, comparison is made with the results of classical thermoelastic models.

Abstract Image

基于高阶时间导数的双温度微极热弹性模型的旋转微极介质热分析
在这项工作中,研究了平面波在均匀微极热弹性介质中以均匀角速度旋转时的传播。旋转介质的坐标系假定是静止的,因此运动学方程有两个附加项,即引力加速度和科里奥利加速度。基于具有高阶时间导数和双相滞后的双温热弹性模型解决了这一问题,该模型可以解释微观特征对非简单材料的影响。在一定的边界条件下,采用正模态方法,导出了加热引起的温度、位移、微旋和热应力的变化。在不考虑旋转和双温因素的情况下,与经典热弹性模型的计算结果进行了比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Physical Mesomechanics
Physical Mesomechanics Materials Science-General Materials Science
CiteScore
3.50
自引率
18.80%
发文量
48
期刊介绍: The journal provides an international medium for the publication of theoretical and experimental studies and reviews related in the physical mesomechanics and also solid-state physics, mechanics, materials science, geodynamics, non-destructive testing and in a large number of other fields where the physical mesomechanics may be used extensively. Papers dealing with the processing, characterization, structure and physical properties and computational aspects of the mesomechanics of heterogeneous media, fracture mesomechanics, physical mesomechanics of materials, mesomechanics applications for geodynamics and tectonics, mesomechanics of smart materials and materials for electronics, non-destructive testing are viewed as suitable for publication.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信