A. E. Abouelregal, R. Alanazi, A. H. Sofiyev, H. M. Sedighi
{"title":"Thermal Analysis of a Rotating Micropolar Medium Using a Two-Temperature Micropolar Thermoelastic Model with Higher-Order Time Derivatives","authors":"A. E. Abouelregal, R. Alanazi, A. H. Sofiyev, H. M. Sedighi","doi":"10.1134/S1029959923030025","DOIUrl":null,"url":null,"abstract":"<p>In this work, the propagation of planar waves in a homogeneous micropolar thermoelastic medium is studied while the entire body rotates with a uniform angular speed. The coordinate system of the rotating medium is assumed to be stationary, and therefore the kinematic equations have two additional terms, namely, the gravitational and the Coriolis accelerations. The problem is addressed based on the two-temperature thermoelastic model with higher-order time derivatives and dual-phase lag, which can explain the effect of microscopic features in nonsimple materials. With certain boundary conditions and the normal mode approach, the variations in temperature, displacement, microrotation, and thermal stresses induced by heating are derived. In the absence of rotation and two-temperature factor, comparison is made with the results of classical thermoelastic models.</p>","PeriodicalId":726,"journal":{"name":"Physical Mesomechanics","volume":"26 3","pages":"251 - 266"},"PeriodicalIF":1.8000,"publicationDate":"2023-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical Mesomechanics","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1134/S1029959923030025","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, CHARACTERIZATION & TESTING","Score":null,"Total":0}
引用次数: 0
Abstract
In this work, the propagation of planar waves in a homogeneous micropolar thermoelastic medium is studied while the entire body rotates with a uniform angular speed. The coordinate system of the rotating medium is assumed to be stationary, and therefore the kinematic equations have two additional terms, namely, the gravitational and the Coriolis accelerations. The problem is addressed based on the two-temperature thermoelastic model with higher-order time derivatives and dual-phase lag, which can explain the effect of microscopic features in nonsimple materials. With certain boundary conditions and the normal mode approach, the variations in temperature, displacement, microrotation, and thermal stresses induced by heating are derived. In the absence of rotation and two-temperature factor, comparison is made with the results of classical thermoelastic models.
期刊介绍:
The journal provides an international medium for the publication of theoretical and experimental studies and reviews related in the physical mesomechanics and also solid-state physics, mechanics, materials science, geodynamics, non-destructive testing and in a large number of other fields where the physical mesomechanics may be used extensively. Papers dealing with the processing, characterization, structure and physical properties and computational aspects of the mesomechanics of heterogeneous media, fracture mesomechanics, physical mesomechanics of materials, mesomechanics applications for geodynamics and tectonics, mesomechanics of smart materials and materials for electronics, non-destructive testing are viewed as suitable for publication.