Simulation on hysteresis characteristic of squeeze mode magneto-rheological damper based on non-convex constitutive relation

IF 2.2 4区 工程技术 Q2 MECHANICS
Fan Wang, Zi-Xiang Ying, Lin-Xiang Wang
{"title":"Simulation on hysteresis characteristic of squeeze mode magneto-rheological damper based on non-convex constitutive relation","authors":"Fan Wang,&nbsp;Zi-Xiang Ying,&nbsp;Lin-Xiang Wang","doi":"10.1007/s13367-021-0020-2","DOIUrl":null,"url":null,"abstract":"<div><p>Magneto-Rheological (MR) fluid is a controllable material upon the applied magnetic field, and various MR dampers with different structures are designed to take advantage of this unique property. In the current paper, the squeeze mode MR damper is analyzed. The two-dimensional MR fluid squeeze flow in the damper is simulated using the Navier-Stokes’ equations. The shear stress of MR fluid is characterized by a non-convex constitutive relation, which is capable of capturing the solid-like to liquid-like switching. The two-dimensional velocity field and pressure distribution of MR fluid are obtained, from which the damping force of the MR damper is obtained. The unique hysteresis characteristic of the force versus velocity relation of the MR damper is captured. Further, the dependence on the loading rate and the field strength of the hysteresis characteristic is studied in the current paper.</p></div>","PeriodicalId":683,"journal":{"name":"Korea-Australia Rheology Journal","volume":null,"pages":null},"PeriodicalIF":2.2000,"publicationDate":"2021-08-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/s13367-021-0020-2","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Korea-Australia Rheology Journal","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s13367-021-0020-2","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MECHANICS","Score":null,"Total":0}
引用次数: 2

Abstract

Magneto-Rheological (MR) fluid is a controllable material upon the applied magnetic field, and various MR dampers with different structures are designed to take advantage of this unique property. In the current paper, the squeeze mode MR damper is analyzed. The two-dimensional MR fluid squeeze flow in the damper is simulated using the Navier-Stokes’ equations. The shear stress of MR fluid is characterized by a non-convex constitutive relation, which is capable of capturing the solid-like to liquid-like switching. The two-dimensional velocity field and pressure distribution of MR fluid are obtained, from which the damping force of the MR damper is obtained. The unique hysteresis characteristic of the force versus velocity relation of the MR damper is captured. Further, the dependence on the loading rate and the field strength of the hysteresis characteristic is studied in the current paper.

基于非凸本构关系的挤压型磁流变阻尼器滞回特性仿真
磁流变(MR)流体是一种受外加磁场控制的材料,各种不同结构的磁流变阻尼器都是为了利用这一独特特性而设计的。本文对挤压型磁流变阻尼器进行了分析。利用Navier-Stokes方程模拟了二维磁流变液在阻尼器内的挤压流动。磁流变液的剪切应力具有非凸本构关系,能够捕获类固到类液的转换。得到了磁流变流体的二维速度场和压力分布,由此得到了磁流变阻尼器的阻尼力。捕获了磁流变阻尼器的力与速度关系的独特滞后特性。进一步研究了磁滞特性与加载速率和场强的关系。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Korea-Australia Rheology Journal
Korea-Australia Rheology Journal 工程技术-高分子科学
CiteScore
2.80
自引率
0.00%
发文量
28
审稿时长
>12 weeks
期刊介绍: The Korea-Australia Rheology Journal is devoted to fundamental and applied research with immediate or potential value in rheology, covering the science of the deformation and flow of materials. Emphases are placed on experimental and numerical advances in the areas of complex fluids. The journal offers insight into characterization and understanding of technologically important materials with a wide range of practical applications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信