Yanhong Mu , Xiaoming Yang , Baoyu Wang , Haitao Qu , Fulong Chen
{"title":"A novel triple-layer hot stamping process of titanium alloy TC4 sheet for enhancing formability and its application in a plug socket part","authors":"Yanhong Mu , Xiaoming Yang , Baoyu Wang , Haitao Qu , Fulong Chen","doi":"10.1016/j.ijlmm.2022.10.003","DOIUrl":null,"url":null,"abstract":"<div><p>In this paper, a novel method was proposed to improve the production efficiency and formability of titanium alloy, which was named triple-layer sheet hot stamping with a cold die cooling (THF). The titanium alloy sheet was clamped by two steel sheets with no adhesive added, then heated, transferred and formed together. In order to verify the ability in enhancing formability of this process, spherical part forming tests were carried out to study the formability under the single-layer sheet hot stamping (SHF) and THF. Finally, a plug socket part was formed to verify the practicability of the novel forming process. The finite element (FE) model was established to analyze the forming process finding that the formability of the parts were significantly improved after using THF process. Comparing with SHF process, the stamping depth increases by 135.7% at 900 °C in the THF process. The forming limit strain increases from 0.18 of the single-layer sheet to 0.51 of the triple-layer sheet. The forming limit strain obtained by the THF process is close to that of isothermal forming. The friction state is one of the main reason for improving formability. Moreover, for plug socket parts, there is almost no thinning of the part in the THF process at 900 °C. In conclusion, it has great advantages in improving the formability of titanium alloy using the THF process.</p></div>","PeriodicalId":52306,"journal":{"name":"International Journal of Lightweight Materials and Manufacture","volume":"6 2","pages":"Pages 189-197"},"PeriodicalIF":0.0000,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Lightweight Materials and Manufacture","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2588840422000725","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 0
Abstract
In this paper, a novel method was proposed to improve the production efficiency and formability of titanium alloy, which was named triple-layer sheet hot stamping with a cold die cooling (THF). The titanium alloy sheet was clamped by two steel sheets with no adhesive added, then heated, transferred and formed together. In order to verify the ability in enhancing formability of this process, spherical part forming tests were carried out to study the formability under the single-layer sheet hot stamping (SHF) and THF. Finally, a plug socket part was formed to verify the practicability of the novel forming process. The finite element (FE) model was established to analyze the forming process finding that the formability of the parts were significantly improved after using THF process. Comparing with SHF process, the stamping depth increases by 135.7% at 900 °C in the THF process. The forming limit strain increases from 0.18 of the single-layer sheet to 0.51 of the triple-layer sheet. The forming limit strain obtained by the THF process is close to that of isothermal forming. The friction state is one of the main reason for improving formability. Moreover, for plug socket parts, there is almost no thinning of the part in the THF process at 900 °C. In conclusion, it has great advantages in improving the formability of titanium alloy using the THF process.