Global Bifurcation and Highest Waves on Water of Finite Depth

IF 2.6 1区 数学 Q1 MATHEMATICS, APPLIED
Vladimir Kozlov, Evgeniy Lokharu
{"title":"Global Bifurcation and Highest Waves on Water of Finite Depth","authors":"Vladimir Kozlov,&nbsp;Evgeniy Lokharu","doi":"10.1007/s00205-023-01929-x","DOIUrl":null,"url":null,"abstract":"<div><p>We consider the two-dimensional problem for steady water waves with vorticity on water of finite depth. While neglecting the effects of surface tension we construct connected families of large amplitude periodic waves approaching a limiting wave, which is either a solitary wave, the highest solitary wave, the highest Stokes wave or a Stokes wave with a breaking profile. In particular, when the vorticity is nonnegative we prove the existence of highest Stokes waves with an included angle of 120<span>\\(^\\circ \\)</span>. In contrast to previous studies, we fix the Bernoulli constant and consider the wavelength as a bifurcation parameter, which guarantees that the limiting wave has a finite depth. In fact, this is the first rigorous proof of the existence of extreme Stokes waves with vorticity on water of finite depth. Aside from the existence of highest waves, we provide a new result about the regularity of Stokes waves of arbitrary amplitude (including extreme waves). Furthermore, we prove several new facts about steady waves, such as a lower bound for the wavelength of Stokes waves, while also eliminating a possibility of the wave breaking for waves with non-negative vorticity.</p></div>","PeriodicalId":55484,"journal":{"name":"Archive for Rational Mechanics and Analysis","volume":null,"pages":null},"PeriodicalIF":2.6000,"publicationDate":"2023-09-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s00205-023-01929-x.pdf","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Archive for Rational Mechanics and Analysis","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s00205-023-01929-x","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 9

Abstract

We consider the two-dimensional problem for steady water waves with vorticity on water of finite depth. While neglecting the effects of surface tension we construct connected families of large amplitude periodic waves approaching a limiting wave, which is either a solitary wave, the highest solitary wave, the highest Stokes wave or a Stokes wave with a breaking profile. In particular, when the vorticity is nonnegative we prove the existence of highest Stokes waves with an included angle of 120\(^\circ \). In contrast to previous studies, we fix the Bernoulli constant and consider the wavelength as a bifurcation parameter, which guarantees that the limiting wave has a finite depth. In fact, this is the first rigorous proof of the existence of extreme Stokes waves with vorticity on water of finite depth. Aside from the existence of highest waves, we provide a new result about the regularity of Stokes waves of arbitrary amplitude (including extreme waves). Furthermore, we prove several new facts about steady waves, such as a lower bound for the wavelength of Stokes waves, while also eliminating a possibility of the wave breaking for waves with non-negative vorticity.

Abstract Image

有限深度水上的全局分岔和最高波
我们考虑有限深度水上具有涡度的定常水波的二维问题。在忽略表面张力影响的情况下,我们构造了接近极限波的大振幅周期波的连通族,极限波是孤立波、最高孤立波、最大斯托克斯波或具有断裂轮廓的斯托克斯波。特别地,当涡度为非负时,我们证明了夹角为120的最高斯托克斯波的存在。与之前的研究相反,我们固定了伯努利常数,并将波长视为分叉参数,这保证了极限波具有有限的深度。事实上,这是第一个严格证明在有限深度的水中存在具有涡度的极端斯托克斯波。除了存在最高波之外,我们还对任意振幅的斯托克斯波(包括极值波)的正则性给出了一个新的结果。此外,我们证明了关于定常波的几个新事实,例如斯托克斯波波长的下界,同时也消除了具有非负涡度的波的波破碎的可能性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
5.10
自引率
8.00%
发文量
98
审稿时长
4-8 weeks
期刊介绍: The Archive for Rational Mechanics and Analysis nourishes the discipline of mechanics as a deductive, mathematical science in the classical tradition and promotes analysis, particularly in the context of application. Its purpose is to give rapid and full publication to research of exceptional moment, depth and permanence.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信