{"title":"Magnifying multimodal forgery clues for Deepfake detection","authors":"Xiaolong Liu, Yang Yu, Xiaolong Li, Yao Zhao","doi":"10.1016/j.image.2023.117010","DOIUrl":null,"url":null,"abstract":"<div><p><span>Advancements in computer vision<span><span> and deep learning have led to difficulty in distinguishing the generated Deepfake media. In addition, recent forgery techniques also modify the audio information based on the forged video, which brings new challenges. However, due to the cross-modal bias, recent multimodal detection methods do not well explore the intra-modal and cross-modal forgery clues, which leads to limited detection performance. In this paper, we propose a novel audio-visual aware multimodal Deepfake detection framework to magnify intra-modal and cross-modal forgery clues. Firstly, to capture temporal intra-modal defects, Forgery Clues Magnification Transformer (FCMT) module is proposed to magnify forgery clues based on sequence-level relationships. Then, the Distribution Difference based Inconsistency Computing (DDIC) module based on Jensen–Shannon divergence is designed to adaptively align </span>multimodal information for further magnifying the cross-modal inconsistency. Next, we further explore spatial artifacts by connecting multi-scale feature representation to provide comprehensive information. Finally, a </span></span>feature fusion<span> module is designed to adaptively fuse features to generate a more discriminative feature. Experiments demonstrate that the proposed framework outperforms independently trained models, and at the same time, yields superior generalization capability on unseen types of Deepfake.</span></p></div>","PeriodicalId":49521,"journal":{"name":"Signal Processing-Image Communication","volume":"118 ","pages":"Article 117010"},"PeriodicalIF":3.4000,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Signal Processing-Image Communication","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0923596523000929","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
Advancements in computer vision and deep learning have led to difficulty in distinguishing the generated Deepfake media. In addition, recent forgery techniques also modify the audio information based on the forged video, which brings new challenges. However, due to the cross-modal bias, recent multimodal detection methods do not well explore the intra-modal and cross-modal forgery clues, which leads to limited detection performance. In this paper, we propose a novel audio-visual aware multimodal Deepfake detection framework to magnify intra-modal and cross-modal forgery clues. Firstly, to capture temporal intra-modal defects, Forgery Clues Magnification Transformer (FCMT) module is proposed to magnify forgery clues based on sequence-level relationships. Then, the Distribution Difference based Inconsistency Computing (DDIC) module based on Jensen–Shannon divergence is designed to adaptively align multimodal information for further magnifying the cross-modal inconsistency. Next, we further explore spatial artifacts by connecting multi-scale feature representation to provide comprehensive information. Finally, a feature fusion module is designed to adaptively fuse features to generate a more discriminative feature. Experiments demonstrate that the proposed framework outperforms independently trained models, and at the same time, yields superior generalization capability on unseen types of Deepfake.
期刊介绍:
Signal Processing: Image Communication is an international journal for the development of the theory and practice of image communication. Its primary objectives are the following:
To present a forum for the advancement of theory and practice of image communication.
To stimulate cross-fertilization between areas similar in nature which have traditionally been separated, for example, various aspects of visual communications and information systems.
To contribute to a rapid information exchange between the industrial and academic environments.
The editorial policy and the technical content of the journal are the responsibility of the Editor-in-Chief, the Area Editors and the Advisory Editors. The Journal is self-supporting from subscription income and contains a minimum amount of advertisements. Advertisements are subject to the prior approval of the Editor-in-Chief. The journal welcomes contributions from every country in the world.
Signal Processing: Image Communication publishes articles relating to aspects of the design, implementation and use of image communication systems. The journal features original research work, tutorial and review articles, and accounts of practical developments.
Subjects of interest include image/video coding, 3D video representations and compression, 3D graphics and animation compression, HDTV and 3DTV systems, video adaptation, video over IP, peer-to-peer video networking, interactive visual communication, multi-user video conferencing, wireless video broadcasting and communication, visual surveillance, 2D and 3D image/video quality measures, pre/post processing, video restoration and super-resolution, multi-camera video analysis, motion analysis, content-based image/video indexing and retrieval, face and gesture processing, video synthesis, 2D and 3D image/video acquisition and display technologies, architectures for image/video processing and communication.