Combinatorics of Serre weights in the potentially Barsotti–Tate setting

Q4 Mathematics
X. Caruso, Agnès David, Ariane M'ezard
{"title":"Combinatorics of Serre weights in the\npotentially Barsotti–Tate setting","authors":"X. Caruso, Agnès David, Ariane M'ezard","doi":"10.2140/moscow.2023.12.1","DOIUrl":null,"url":null,"abstract":"Let $F$ be a finite unramified extension of $\\mathbb Q\\_p$ and $\\bar\\rho$ be an absolutely irreducible mod~$p$ $2$-dimensional representation of the absolute Galois group of $F$. Let $t$ be a tame inertial type of $F$. We conjecture that the deformation space parametrizing the potentially Barsotti--Tate liftings of $\\bar\\rho$ having type $t$ depends only on the Kisin variety attached to the situation, enriched with its canonical embedding into $(\\mathbb P^1)^f$ and its shape stratification. We give evidences towards this conjecture by proving that the Kisin variety determines the cardinality of the set of common Serre weights $D(t,\\bar\\rho) = D(t) \\cap D(\\bar\\rho)$. Besides, we prove that this dependance is nondecreasing (the smaller is the Kisin variety, the smaller is the number of common Serre weights) and compatible with products (if the Kisin variety splits as a product, so does the number of weights).","PeriodicalId":36590,"journal":{"name":"Moscow Journal of Combinatorics and Number Theory","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-05-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Moscow Journal of Combinatorics and Number Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2140/moscow.2023.12.1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 2

Abstract

Let $F$ be a finite unramified extension of $\mathbb Q\_p$ and $\bar\rho$ be an absolutely irreducible mod~$p$ $2$-dimensional representation of the absolute Galois group of $F$. Let $t$ be a tame inertial type of $F$. We conjecture that the deformation space parametrizing the potentially Barsotti--Tate liftings of $\bar\rho$ having type $t$ depends only on the Kisin variety attached to the situation, enriched with its canonical embedding into $(\mathbb P^1)^f$ and its shape stratification. We give evidences towards this conjecture by proving that the Kisin variety determines the cardinality of the set of common Serre weights $D(t,\bar\rho) = D(t) \cap D(\bar\rho)$. Besides, we prove that this dependance is nondecreasing (the smaller is the Kisin variety, the smaller is the number of common Serre weights) and compatible with products (if the Kisin variety splits as a product, so does the number of weights).
潜在Barsotti-Tate设定中Serre权重的组合
设$F$是$\mathbb Q\p$的有限非分枝扩展,$\bar\rho$是$F$的绝对Galois群的绝对不可约模~$p$$2$维表示。设$t$是$F$的一个温和的惯性类型。我们推测,参数化类型为$t$的$\bar\rho$的潜在Barsotti-Tate提升的变形空间仅取决于附加于该情况的Kisin变种,该变种通过其在$(\mathbb P^1)^f$中的正则嵌入及其形状分层而丰富。我们通过证明Kisin变种决定了公共Serre权集合$D(t,\bar\rho)=D(t)\cap D(\bar\rho)$的基数,为这一猜想提供了证据。此外,我们证明了这种依赖性是不递减的(Kisin变种越小,常见Serre权重的数量就越小),并且与乘积兼容(如果Kisin品种分裂为乘积,权重的数量也一样)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Moscow Journal of Combinatorics and Number Theory
Moscow Journal of Combinatorics and Number Theory Mathematics-Algebra and Number Theory
CiteScore
0.80
自引率
0.00%
发文量
21
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信