{"title":"Multisensory Concept Learning Framework Based on Spiking Neural Networks","authors":"Yuwei Wang, Yi Zeng","doi":"10.3389/fnsys.2022.845177","DOIUrl":null,"url":null,"abstract":"Concept learning highly depends on multisensory integration. In this study, we propose a multisensory concept learning framework based on brain-inspired spiking neural networks to create integrated vectors relying on the concept's perceptual strength of auditory, gustatory, haptic, olfactory, and visual. With different assumptions, two paradigms: Independent Merge (IM) and Associate Merge (AM) are designed in the framework. For testing, we employed eight distinct neural models and three multisensory representation datasets. The experiments show that integrated vectors are closer to human beings than the non-integrated ones. Furthermore, we systematically analyze the similarities and differences between IM and AM paradigms and validate the generality of our framework.","PeriodicalId":12649,"journal":{"name":"Frontiers in Systems Neuroscience","volume":" ","pages":""},"PeriodicalIF":3.1000,"publicationDate":"2022-05-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Systems Neuroscience","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.3389/fnsys.2022.845177","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 2
Abstract
Concept learning highly depends on multisensory integration. In this study, we propose a multisensory concept learning framework based on brain-inspired spiking neural networks to create integrated vectors relying on the concept's perceptual strength of auditory, gustatory, haptic, olfactory, and visual. With different assumptions, two paradigms: Independent Merge (IM) and Associate Merge (AM) are designed in the framework. For testing, we employed eight distinct neural models and three multisensory representation datasets. The experiments show that integrated vectors are closer to human beings than the non-integrated ones. Furthermore, we systematically analyze the similarities and differences between IM and AM paradigms and validate the generality of our framework.
期刊介绍:
Frontiers in Systems Neuroscience publishes rigorously peer-reviewed research that advances our understanding of whole systems of the brain, including those involved in sensation, movement, learning and memory, attention, reward, decision-making, reasoning, executive functions, and emotions.