Ionizable lipids in bio-inspired nanocarriers

IF 2.2 4区 生物学 Q3 BIOPHYSICS
Vladimir P. Zhdanov
{"title":"Ionizable lipids in bio-inspired nanocarriers","authors":"Vladimir P. Zhdanov","doi":"10.1007/s00249-023-01633-4","DOIUrl":null,"url":null,"abstract":"<div><p>In applications of bio-inspired nanoparticles (NPs), their composition is often optimised by including ionizable lipids. I use a generic statistical model to describe the charge and potential distributions in lipid nanoparticles (LNPs) containing such lipids. The LNP structure is considered to contain the biophase regions separated by narrow interphase boundaries with water. Ionizable lipids are uniformly distributed at the biophase–water boundaries. The potential is there described at the mean-filed level combining the Langmuir–Stern equation for ionizable lipids and the Poisson–Boltzmann equation for other charges in water. The latter equation is used outside a LNP as well. With physiologically reasonable parameters, the model predicts the scale of the potential in a LNP to be rather low, smaller or about <span>\\(k_\\textrm{B}T/e\\)</span>, and to change primarily near the LNP-solution interface or, more precisely, inside an NP near this interface because the charge of ionizable lipids becomes rapidly neutralized along the coordinate towards the center of a LNP. The extent of dissociation-mediated neutralization of ionizable lipids along this coordinate increases but only slightly. Thus, the neutralization is primarily due to the negative and positive ions related to the ionic strength in solution and located inside a LNP.</p></div>","PeriodicalId":548,"journal":{"name":"European Biophysics Journal","volume":"52 1-2","pages":"121 - 127"},"PeriodicalIF":2.2000,"publicationDate":"2023-02-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s00249-023-01633-4.pdf","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Biophysics Journal","FirstCategoryId":"2","ListUrlMain":"https://link.springer.com/article/10.1007/s00249-023-01633-4","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOPHYSICS","Score":null,"Total":0}
引用次数: 1

Abstract

In applications of bio-inspired nanoparticles (NPs), their composition is often optimised by including ionizable lipids. I use a generic statistical model to describe the charge and potential distributions in lipid nanoparticles (LNPs) containing such lipids. The LNP structure is considered to contain the biophase regions separated by narrow interphase boundaries with water. Ionizable lipids are uniformly distributed at the biophase–water boundaries. The potential is there described at the mean-filed level combining the Langmuir–Stern equation for ionizable lipids and the Poisson–Boltzmann equation for other charges in water. The latter equation is used outside a LNP as well. With physiologically reasonable parameters, the model predicts the scale of the potential in a LNP to be rather low, smaller or about \(k_\textrm{B}T/e\), and to change primarily near the LNP-solution interface or, more precisely, inside an NP near this interface because the charge of ionizable lipids becomes rapidly neutralized along the coordinate towards the center of a LNP. The extent of dissociation-mediated neutralization of ionizable lipids along this coordinate increases but only slightly. Thus, the neutralization is primarily due to the negative and positive ions related to the ionic strength in solution and located inside a LNP.

Abstract Image

仿生纳米载体中的可电离脂质
在生物启发纳米颗粒(NPs)的应用中,它们的组成通常通过包括可电离脂质来优化。我使用一个通用的统计模型来描述含有这种脂质的脂质纳米颗粒(LNPs)中的电荷和电位分布。LNP结构被认为包含由与水的窄相间界分隔的生物相区域。可电离脂质均匀分布于生物相-水边界。在平均场水平上,结合了电离脂质的Langmuir-Stern方程和水中其他电荷的泊松-玻尔兹曼方程来描述势。后一个方程也可以在LNP之外使用。在生理参数合理的情况下,该模型预测LNP中的电位规模相当低,更小或约为\(k_\textrm{B}T/e\),并且主要在LNP溶液界面附近发生变化,或者更准确地说,在靠近该界面的NP内部发生变化,因为可电离脂质的电荷沿着LNP中心的坐标迅速中和。解离介导的可电离脂质的中和程度沿着这个坐标增加,但只是轻微增加。因此,中和作用主要是由于与溶液中离子强度有关且位于LNP内部的负离子和正离子。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
European Biophysics Journal
European Biophysics Journal 生物-生物物理
CiteScore
4.30
自引率
0.00%
发文量
43
审稿时长
6-12 weeks
期刊介绍: The journal publishes papers in the field of biophysics, which is defined as the study of biological phenomena by using physical methods and concepts. Original papers, reviews and Biophysics letters are published. The primary goal of this journal is to advance the understanding of biological structure and function by application of the principles of physical science, and by presenting the work in a biophysical context. Papers employing a distinctively biophysical approach at all levels of biological organisation will be considered, as will both experimental and theoretical studies. The criteria for acceptance are scientific content, originality and relevance to biological systems of current interest and importance. Principal areas of interest include: - Structure and dynamics of biological macromolecules - Membrane biophysics and ion channels - Cell biophysics and organisation - Macromolecular assemblies - Biophysical methods and instrumentation - Advanced microscopics - System dynamics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信