{"title":"Decadal prediction skill for Eurasian surface air temperature in CMIP6 models","authors":"Yanyan Huang , Ni Huang , Qianfei Zhao","doi":"10.1016/j.aosl.2023.100377","DOIUrl":null,"url":null,"abstract":"<div><p>The Eurasian surface air temperature (SAT) is experiencing decadal variations against the background of global warming. The prediction skill for the seasonal mean SAT in CMIP6 Decadal Climate Prediction Project (DCPP) models is investigated in this study. The large decadal variations of winter and autumn Eurasian SAT are barely predicted by the CMIP6 models. IPSL-CM6A-LR and the multimodel ensemble have skill in predicting the variations of spring Eurasian SAT, with significant anomaly correlation coefficients, but not for the amplitude, with negative mean-square skill scores. Significant skill is apparent for the summer SAT over Mongolia and North China, with the CMIP6 models showing their best skill for the summer Eurasian SAT. Compared to external forcing, model skills for Eurasian SAT may derive more from the initialization. It should be noted that there are model system errors in the form of false strong relationships of SAT between winter and other seasons when in fact the variations of other seasons’ SATs are independent of the winter SAT in observations.</p><p>摘要</p><p>评估CMIP6年代际预测试验对季节平均SAT的预测技巧的结果表明: 模式不能有效预测冬季和秋季SAT的年代际变率. IPSL-CM6A-LR和多模式集合平均对于春季SAT展现了预测技巧, 其中对于变率的预测技巧好于振幅的结果. 基于蒙古和我国华北地区的显著预测技巧, 模式对于夏季SAT表现出最佳的预测水平. 与外部强迫相比, 模式对于SAT的预测技巧可能来自初始化. 模式中的一个明显系统性误差值得注意, 即模式中冬季SAT的变率可以持续到其他季节, 而在观测中其他季节的SAT变化与冬季SAT相对独立.</p></div>","PeriodicalId":47210,"journal":{"name":"Atmospheric and Oceanic Science Letters","volume":"17 1","pages":"Article 100377"},"PeriodicalIF":2.3000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1674283423000636/pdfft?md5=b2b4956ec9f6d94409a50086c1073cad&pid=1-s2.0-S1674283423000636-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Atmospheric and Oceanic Science Letters","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1674283423000636","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"METEOROLOGY & ATMOSPHERIC SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
The Eurasian surface air temperature (SAT) is experiencing decadal variations against the background of global warming. The prediction skill for the seasonal mean SAT in CMIP6 Decadal Climate Prediction Project (DCPP) models is investigated in this study. The large decadal variations of winter and autumn Eurasian SAT are barely predicted by the CMIP6 models. IPSL-CM6A-LR and the multimodel ensemble have skill in predicting the variations of spring Eurasian SAT, with significant anomaly correlation coefficients, but not for the amplitude, with negative mean-square skill scores. Significant skill is apparent for the summer SAT over Mongolia and North China, with the CMIP6 models showing their best skill for the summer Eurasian SAT. Compared to external forcing, model skills for Eurasian SAT may derive more from the initialization. It should be noted that there are model system errors in the form of false strong relationships of SAT between winter and other seasons when in fact the variations of other seasons’ SATs are independent of the winter SAT in observations.
在全球变暖的背景下,欧亚大陆的地表气温(SAT)正在经历十年一次的变化。本研究调查了 CMIP6 十年期气候预测项目(DCPP)模式对季节平均 SAT 的预测能力。CMIP6 模式几乎没有预测到欧亚大陆冬季和秋季 SAT 十年期的巨大变化。IPSL-CM6A-LR和多模式集合在预测春季欧亚SAT变化方面有一定的能力,异常相关系数显著,但在预测振幅方面没有能力,均方能力为负值。蒙古和华北地区的夏季 SAT 有明显的技能,其中 CMIP6 模式对夏季欧亚 SAT 的技能最好。与外部强迫相比,模式对欧亚 SAT 的技能可能更多来自初始化。需要注意的是,模式系统误差的表现形式是冬季与其他季节的 SAT 关系虚假而强烈,而实际上其他季节的 SAT 变化与观测资料中的冬季 SAT 无关。摘要评估 cmip6 年代际预测试验对季节平均 SAT 的预测技巧的结果表明: 模式不能有效预测冬季和秋季 SAT 的年代际变率。基于蒙古和我国华北地区的际预测试验对季节平均sat的预测技巧的结果表明: 模式不能有效预测冬季和秋季sat的年代际变率。基于蒙古和我国华北地区的显著预测技巧,模式对于夏季卫星表现出最佳的预测水平。与外部强迫相比,模式对于sat的预测技巧可能来自初始化。模式中的一个明显系统性误差值得注意, 即模式中冬季sat的变率可以持续到其他季节, 而在观测中其他季节的sat变化与冬季sat相对独立。