Hilbert-Kirby Polynomials in Generalized Local Cohomology Modules

IF 0.3 Q4 MATHEMATICS
M. Shafiei, A. Khojali, A. Azari, N. Zamani
{"title":"Hilbert-Kirby Polynomials in Generalized Local Cohomology Modules","authors":"M. Shafiei,&nbsp;A. Khojali,&nbsp;A. Azari,&nbsp;N. Zamani","doi":"10.1007/s40306-021-00440-3","DOIUrl":null,"url":null,"abstract":"<div><p>Let <span>\\(R = \\oplus _{n\\in \\mathbb {N}_{0}}R_{n}\\)</span> be a Noetherian homogeneous ring with irrelevant ideal <span>\\(R_{+} = \\oplus _{n\\in \\mathbb {N}} R_{n}\\)</span> and with local base ring <span>\\((R_{0},\\mathfrak {m}_{0})\\)</span>. Let <i>M</i>, <i>N</i> be two finitely generated <span>\\(\\mathbb {Z}\\)</span>-graded <i>R</i>-modules. We show that the lengths of the graded components of various graded submodules and quotients of the <i>i</i>-th generalized local cohomology <span>\\(H^{i}_{R_{+}}(M, N)\\)</span> are anti-polynomial. Under some mild assumptions, the Artinianness of <span>\\(H^{i}_{R_{+}}(M, N)\\)</span> and the asymptotic behavior of the <i>R</i><sub>0</sub>-modules <span>\\(H^{i}_{R_{+}}(M, N)_{n}\\)</span> for <span>\\(n\\rightarrow -\\infty \\)</span> in the range <span>\\(i\\leq \\inf \\{i\\in \\mathbb {N}_{0} \\vert \\sharp \\{n\\vert \\ell _{R_{0}}\\)</span> <span>\\((H^{i}_{ R_{+}}(M , N)_{n}) = \\infty \\}=\\infty \\}\\)</span> will be studied. Moreover, it has been proved that, if <i>u</i> is the least integer <i>i</i> for which <span>\\(H^{i}_{R_{+}}(M,N)\\)</span> is not Artinian and <span>\\(\\mathfrak {q}_{0}\\)</span> is an <span>\\(\\mathfrak {m}_{0}\\)</span>-primary ideal of <i>R</i><sub>0</sub>, then <span>\\(H^{u}_{R_{+}}(M,N)/\\mathfrak q_{0}H^{u}_{R_{+}}(M,\\)</span> <i>N</i>) is Artinian with Hilbert-Kirby polynomial of degree less than <i>u</i>. In particular, with <i>M</i> = <i>R</i>, we deduce the correspondent result for ordinary local cohomology module <span>\\(H^{i}_{R_{+}}(N)\\)</span>.</p></div>","PeriodicalId":45527,"journal":{"name":"Acta Mathematica Vietnamica","volume":"46 4","pages":"747 - 759"},"PeriodicalIF":0.3000,"publicationDate":"2021-10-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s40306-021-00440-3.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Mathematica Vietnamica","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1007/s40306-021-00440-3","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

Let \(R = \oplus _{n\in \mathbb {N}_{0}}R_{n}\) be a Noetherian homogeneous ring with irrelevant ideal \(R_{+} = \oplus _{n\in \mathbb {N}} R_{n}\) and with local base ring \((R_{0},\mathfrak {m}_{0})\). Let M, N be two finitely generated \(\mathbb {Z}\)-graded R-modules. We show that the lengths of the graded components of various graded submodules and quotients of the i-th generalized local cohomology \(H^{i}_{R_{+}}(M, N)\) are anti-polynomial. Under some mild assumptions, the Artinianness of \(H^{i}_{R_{+}}(M, N)\) and the asymptotic behavior of the R0-modules \(H^{i}_{R_{+}}(M, N)_{n}\) for \(n\rightarrow -\infty \) in the range \(i\leq \inf \{i\in \mathbb {N}_{0} \vert \sharp \{n\vert \ell _{R_{0}}\) \((H^{i}_{ R_{+}}(M , N)_{n}) = \infty \}=\infty \}\) will be studied. Moreover, it has been proved that, if u is the least integer i for which \(H^{i}_{R_{+}}(M,N)\) is not Artinian and \(\mathfrak {q}_{0}\) is an \(\mathfrak {m}_{0}\)-primary ideal of R0, then \(H^{u}_{R_{+}}(M,N)/\mathfrak q_{0}H^{u}_{R_{+}}(M,\) N) is Artinian with Hilbert-Kirby polynomial of degree less than u. In particular, with M = R, we deduce the correspondent result for ordinary local cohomology module \(H^{i}_{R_{+}}(N)\).

广义局部上同调模中的Hilbert-Kirby多项式
设\(R=\oplus_{n\in\mathbb{N}_{0}}R_{n}\)是具有不相关理想\(R_{m}_{0})\)。设M,N是两个有限生成的\(\mathbb{Z}\)-分次R-模。我们证明了不同分次子模的分次分量的长度和第i个广义局部上同调的商^{i}_{R_{+}}(M,N)\)是反多项式。在一些温和的假设下,\(H)的Artinianess^{i}_{R_{+}}(M,N)\)和R0模\(H)的渐近性态^{i}_{R_{+}}(M,N)_{N}\)用于范围\(i\leq\inf\{i\in\mathbb中的\(N\rightarrow-\infty\){N}_{0}\vert\sharp^{i}_{R_{+}}(M,N)_{N})=\infty\}=\infity\}\)。此外,还证明了,如果u是其中\(H)的最小整数i^{i}_{R_{+}}(M,N)\)不是Artinian并且\(\mathfrak{q}_{0}\)是\(\mathfrak{m}_{0}\)-R0的初理想,则\(H^{u}_{R_{+}}(M,N)/\mathfrak q_{0}H^{u}_{R_{+}}(M,\)N)是次小于u的Hilbert-Kirby多项式的Artinian。特别是在M=R的情况下,我们推导了普通局部上同调模\(H^{i}_{R_{+}}(N)\)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
0.90
自引率
0.00%
发文量
23
期刊介绍: Acta Mathematica Vietnamica is a peer-reviewed mathematical journal. The journal publishes original papers of high quality in all branches of Mathematics with strong focus on Algebraic Geometry and Commutative Algebra, Algebraic Topology, Complex Analysis, Dynamical Systems, Optimization and Partial Differential Equations.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信