Skill improvement of the yearly updated reforecasts in ECMWF S2S prediction from 2016 to 2022

IF 2.3 4区 地球科学 Q3 METEOROLOGY & ATMOSPHERIC SCIENCES
Yihao Peng , Xiaolei Liu , Jingzhi Su , Xinli Liu , Yixu Zhang
{"title":"Skill improvement of the yearly updated reforecasts in ECMWF S2S prediction from 2016 to 2022","authors":"Yihao Peng ,&nbsp;Xiaolei Liu ,&nbsp;Jingzhi Su ,&nbsp;Xinli Liu ,&nbsp;Yixu Zhang","doi":"10.1016/j.aosl.2023.100357","DOIUrl":null,"url":null,"abstract":"<div><p>Hazardous weather events are often accompanied by subseasonal processes, but the forecast skills of subseasonal prediction are still limited. To assess the skill improvement of the constantly updated model version in ECMWF subseasonal-seasonal (S2S) prediction from 2016 to 2022, the performance of yearly updated reforecasts was evaluated against ERA5 reanalysis data using the temporal anomaly correlation coefficient (TCC) as a metric. The newly updated reforecasts exhibit stable superiority at the weather scale of the first two weeks, regardless of whether the 2-m temperature or precipitation forecast is being considered. At the subseasonal time scale starting from the third week, some slight improvements in prediction skills are only found in several tropical regions. Generally, the week-3 TCC values averaged over global land grids still reflect an advancement in prediction skills for updated reforecasts. For the Madden–Julian Oscillation (MJO), reforecasts can reproduce the characteristics of eastward propagation, but there are deviations in the intensity and propagation range of convection anomalies for reforecasts of all seven years. Based on an evaluation of MJO prediction skill using the bivariate anomaly correlation coefficient and bivariate root-mean-square error, some differences are apparent in the MJO prediction skills among the updated reforecasts, but the improvements do not increase monotonically year by year. Despite the inherent limitation of S2S prediction, positive progress has already been achieved via the constantly updated S2S prediction in ECMWF, which reinforces the confidence in further collaboratively improving S2S prediction in the future.</p><p>摘要</p><p>在2016年至2022年间, ECMWF次季节预测系统不断升级并逐年完成新的回报试验. 本文考察该预测系统逐年升级带来的预测技巧提升潜力. 从2米气温和降水来看, 在起报之后的前两周内天气尺度上预测技巧表现出逐年稳定提升的趋势; 在从第三周开始的次季节时间尺度上, 预测技巧的提升仅限于热带部分区域. MJO预测技巧并不随着模式升级而逐年单调提升. 尽管目前S2S预测技巧存在局限性, 但目前已有的进展增强了在未来深入合作以提高S2S预测技术的信心.</p></div>","PeriodicalId":47210,"journal":{"name":"Atmospheric and Oceanic Science Letters","volume":"16 5","pages":"Article 100357"},"PeriodicalIF":2.3000,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Atmospheric and Oceanic Science Letters","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1674283423000351","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"METEOROLOGY & ATMOSPHERIC SCIENCES","Score":null,"Total":0}
引用次数: 1

Abstract

Hazardous weather events are often accompanied by subseasonal processes, but the forecast skills of subseasonal prediction are still limited. To assess the skill improvement of the constantly updated model version in ECMWF subseasonal-seasonal (S2S) prediction from 2016 to 2022, the performance of yearly updated reforecasts was evaluated against ERA5 reanalysis data using the temporal anomaly correlation coefficient (TCC) as a metric. The newly updated reforecasts exhibit stable superiority at the weather scale of the first two weeks, regardless of whether the 2-m temperature or precipitation forecast is being considered. At the subseasonal time scale starting from the third week, some slight improvements in prediction skills are only found in several tropical regions. Generally, the week-3 TCC values averaged over global land grids still reflect an advancement in prediction skills for updated reforecasts. For the Madden–Julian Oscillation (MJO), reforecasts can reproduce the characteristics of eastward propagation, but there are deviations in the intensity and propagation range of convection anomalies for reforecasts of all seven years. Based on an evaluation of MJO prediction skill using the bivariate anomaly correlation coefficient and bivariate root-mean-square error, some differences are apparent in the MJO prediction skills among the updated reforecasts, but the improvements do not increase monotonically year by year. Despite the inherent limitation of S2S prediction, positive progress has already been achieved via the constantly updated S2S prediction in ECMWF, which reinforces the confidence in further collaboratively improving S2S prediction in the future.

摘要

在2016年至2022年间, ECMWF次季节预测系统不断升级并逐年完成新的回报试验. 本文考察该预测系统逐年升级带来的预测技巧提升潜力. 从2米气温和降水来看, 在起报之后的前两周内天气尺度上预测技巧表现出逐年稳定提升的趋势; 在从第三周开始的次季节时间尺度上, 预测技巧的提升仅限于热带部分区域. MJO预测技巧并不随着模式升级而逐年单调提升. 尽管目前S2S预测技巧存在局限性, 但目前已有的进展增强了在未来深入合作以提高S2S预测技术的信心.

Abstract Image

2016年至2022年ECMWF S2S预测中年度更新重新预测的技能改进
危险天气事件往往伴随着亚季节过程,但亚季节预报的预报能力仍然有限。为了评估持续更新模式版本在2016 - 2022年ECMWF亚季节-季节(S2S)预测中的技能提升,以时间异常相关系数(TCC)为指标,对ERA5再分析数据进行了年度更新再预测的性能评估。在前两周的天气尺度上,无论是否考虑2米的温度或降水预报,新更新的预报都表现出稳定的优势。在从第三周开始的亚季节时间尺度上,只有几个热带地区的预测技能略有提高。一般来说,第3周的全球陆地网格平均TCC值仍然反映了更新再预报的预测技能的进步。对于马登-朱利安涛动(MJO),重预报可以再现东向传播的特征,但7年重预报的对流异常强度和传播范围都存在偏差。基于二元异常相关系数和二元均方根误差对MJO预测技能的评价,MJO预测技能在更新后的重预报中存在一定的差异,但改善不是逐年单调增加的。尽管S2S预测存在固有的局限性,但ECMWF不断更新的S2S预测已经取得了积极进展,这增强了未来进一步协同改进S2S预测的信心。2016年1月1日,中国日报网2015-10-29本文考察该预测系统逐年升级带来的预测技巧提升潜力. 从2米气温和降水来看, 在起报之后的前两周内天气尺度上预测技巧表现出逐年稳定提升的趋势; 在从第三周开始的次季节时间尺度上, 预测技巧的提升仅限于热带部分区域. 这是我的梦想,我的梦想。尽管目前s2预测技巧存在局限性,但目前已有的进展增强了在未来深入合作以提高s2预测技术的信心。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Atmospheric and Oceanic Science Letters
Atmospheric and Oceanic Science Letters METEOROLOGY & ATMOSPHERIC SCIENCES-
CiteScore
4.20
自引率
8.70%
发文量
925
审稿时长
12 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信