Entire Solutions of a Certain Type of Nonlinear Differential-Difference Equations

IF 0.3 Q4 MATHEMATICS
Wen-Jie Hao, Jun-Fan Chen
{"title":"Entire Solutions of a Certain Type of Nonlinear Differential-Difference Equations","authors":"Wen-Jie Hao,&nbsp;Jun-Fan Chen","doi":"10.1007/s40306-021-00464-9","DOIUrl":null,"url":null,"abstract":"<div><p>The aim of the paper is to investigate all transcendental entire solutions of the following general nonlinear equation of the form <span>\\(f^{n}+P_{d}(z,f)=p_{1}e^{\\alpha _{1}z}+p_{2}e^{\\alpha _{2}z}\\)</span>, where <i>P</i><sub><i>d</i></sub>(<i>z</i>,<i>f</i>) is a differential-difference polynomial in <i>f</i> of degree <i>d</i>. Our result is a generalization and complement of known results obtained by Liu-Mao, L<span>\\({\\ddot {\\mathrm {u}}}\\)</span> et al. and the references therein.</p></div>","PeriodicalId":45527,"journal":{"name":"Acta Mathematica Vietnamica","volume":"47 4","pages":"731 - 741"},"PeriodicalIF":0.3000,"publicationDate":"2021-11-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Mathematica Vietnamica","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1007/s40306-021-00464-9","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

The aim of the paper is to investigate all transcendental entire solutions of the following general nonlinear equation of the form \(f^{n}+P_{d}(z,f)=p_{1}e^{\alpha _{1}z}+p_{2}e^{\alpha _{2}z}\), where Pd(z,f) is a differential-difference polynomial in f of degree d. Our result is a generalization and complement of known results obtained by Liu-Mao, L\({\ddot {\mathrm {u}}}\) et al. and the references therein.

一类非线性微分-差分方程的全解
本文的目的是研究下列形式为(f^{n}+P_{d}(z,f)=P的一般非线性方程的所有超越整体解_{1}e^{\alpha_{1}z}+p_{2}e^{\alpha_{2}z}\),其中Pd(z,f)是f中d次的微分差分多项式。我们的结果是刘茂、L\({\ddot{\mathrm{u}})等人及其参考文献获得的已知结果的推广和补充。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
0.90
自引率
0.00%
发文量
23
期刊介绍: Acta Mathematica Vietnamica is a peer-reviewed mathematical journal. The journal publishes original papers of high quality in all branches of Mathematics with strong focus on Algebraic Geometry and Commutative Algebra, Algebraic Topology, Complex Analysis, Dynamical Systems, Optimization and Partial Differential Equations.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信