Foundational aspects of uncountable measure theory: Gelfand duality, Riesz representation, canonical models, and canonical disintegration

Pub Date : 2020-10-01 DOI:10.4064/fm226-7-2022
Asgar Jamneshan, T. Tao
{"title":"Foundational aspects of uncountable measure theory: Gelfand duality, Riesz representation, canonical models, and canonical disintegration","authors":"Asgar Jamneshan, T. Tao","doi":"10.4064/fm226-7-2022","DOIUrl":null,"url":null,"abstract":"We collect several foundational results regarding the interaction between locally compact spaces, probability spaces and probability algebras, and commutative $C^*$-algebras and von Neumann algebras equipped with traces, in the \"uncountable\" setting in which no separability, metrizability, or standard Borel hypotheses are placed on these spaces and algebras. In particular, we review the Gelfand dualities and Riesz representation theorems available in this setting. We also introduce a canonical model that represents (opposite) probability algebras as compact Hausdorff probability spaces in a completely functorial fashion, and apply this model to obtain a canonical disintegration theorem and to readily construct various product measures. These tools will be used in future papers by the authors and others in various applications to \"uncountable\" ergodic theory.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2020-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"15","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4064/fm226-7-2022","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 15

Abstract

We collect several foundational results regarding the interaction between locally compact spaces, probability spaces and probability algebras, and commutative $C^*$-algebras and von Neumann algebras equipped with traces, in the "uncountable" setting in which no separability, metrizability, or standard Borel hypotheses are placed on these spaces and algebras. In particular, we review the Gelfand dualities and Riesz representation theorems available in this setting. We also introduce a canonical model that represents (opposite) probability algebras as compact Hausdorff probability spaces in a completely functorial fashion, and apply this model to obtain a canonical disintegration theorem and to readily construct various product measures. These tools will be used in future papers by the authors and others in various applications to "uncountable" ergodic theory.
分享
查看原文
不可数测度理论的基础方面:盖尔芬德对偶、里兹表示、正则模型和正则分解
我们收集了一些关于局部紧空间、概率空间和概率代数、可交换的C^* -代数和带迹的von Neumann代数之间的相互作用的基本结果,在“不可数”的设置中,这些空间和代数上没有可分性、度量性或标准Borel假设。特别地,我们回顾了在这种情况下可用的Gelfand对偶和Riesz表示定理。我们还引入了一个正则模型,该模型以完全泛函的方式将(相反的)概率代数表示为紧致的Hausdorff概率空间,并应用该模型获得了一个正则分解定理,并且很容易构造各种积测度。这些工具将被作者和其他人在未来的论文中用于“不可数”遍历理论的各种应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信